Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 29(10): 1913-1927, 2022 10.
Article in English | MEDLINE | ID: mdl-35332310

ABSTRACT

Cancer cells are known for their ability to adapt variable metabolic programs depending on the availability of specific nutrients. Our previous studies have shown that uptake of fatty acids alters cellular metabolic pathways in colon cancer cells to favor fatty acid oxidation. Here, we show that fatty acids activate Drp1 to promote metabolic plasticity in cancer cells. Uptake of fatty acids (FAs) induces mitochondrial fragmentation by promoting ERK-dependent phosphorylation of Drp1 at the S616 site. This increased phosphorylation of Drp1 enhances its dimerization and interaction with Mitochondrial Fission Factor (MFF) at the mitochondria. Consequently, knockdown of Drp1 or MFF attenuates fatty acid-induced mitochondrial fission. In addition, uptake of fatty acids triggers mitophagy via a Drp1- and p62-dependent mechanism to protect mitochondrial integrity. Moreover, results from metabolic profiling analysis reveal that silencing Drp1 disrupts cellular metabolism and blocks fatty acid-induced metabolic reprograming by inhibiting fatty acid utilization. Functionally, knockdown of Drp1 decreases Wnt/ß-catenin signaling by preventing fatty acid oxidation-dependent acetylation of ß-catenin. As a result, Drp1 depletion inhibits the formation of tumor organoids in vitro and xenograft tumor growth in vivo. Taken together, our study identifies Drp1 as a key mediator that connects mitochondrial dynamics with fatty acid metabolism and cancer cell signaling.


Subject(s)
Colonic Neoplasms , Dynamins , Colonic Neoplasms/genetics , Dynamins/genetics , Dynamins/metabolism , Fatty Acids , Humans , Mitochondrial Dynamics/physiology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Phosphorylation , Wnt Signaling Pathway , beta Catenin/metabolism
2.
Cell Death Dis ; 12(11): 960, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663797

ABSTRACT

Aberrant activation of endoplasmic reticulum (ER) stress by extrinsic and intrinsic factors contributes to tumorigenesis and resistance to chemotherapies in various cancer types. Our previous studies have shown that the downregulation of PHLPP, a novel family of Ser/Thr protein phosphatases, promotes tumor initiation, and progression. Here we investigated the functional interaction between the ER stress and PHLPP expression in colon cancer. We found that induction of ER stress significantly decreased the expression of PHLPP proteins through a proteasome-dependent mechanism. Knockdown of PHLPP increased the phosphorylation of eIF2α as well as the expression of autophagy-associated genes downstream of the eIF2α/ATF4 signaling pathway. In addition, results from immunoprecipitation experiments showed that PHLPP interacted with eIF2α and this interaction was enhanced by ER stress. Functionally, knockdown of PHLPP improved cell survival under ER stress conditions, whereas overexpression of a degradation-resistant mutant PHLPP1 had the opposite effect. Taken together, our studies identified ER stress as a novel mechanism that triggers PHLPP downregulation; and PHLPP-loss promotes chemoresistance by upregulating the eIF2α/ATF4 signaling axis in colon cancer cells.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Down-Regulation/genetics , Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/metabolism , Nuclear Proteins/genetics , Phosphoprotein Phosphatases/genetics , Activating Transcription Factor 4/metabolism , Autophagy/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation, Neoplastic , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Protein Binding/drug effects , Signal Transduction/drug effects , Tunicamycin/pharmacology , Tunicamycin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...