Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 56(6): 3535-3543, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35188758

ABSTRACT

In this work, blow flies were investigated as environmental chemical sample collectors following a chemical warfare attack (CWA). Blow flies sample the environment as they search for water and food sources and can be trapped from kilometers away using baited traps. Three species of blow flies were exposed to CWA simulants to determine the persistence and detectability of these compounds under varying environmental conditions. A liquid chromatography mass spectrometry (LC-MS/MS) method was developed to detect CWA simulants and hydrolysis products from fly guts. Flies were exposed to the CWA simulants dimethyl methylphosphonate and diethyl phosphoramidate as well as the pesticide dichlorvos, followed by treatment-dependent temperature and humidity conditions. Flies were sacrificed at intervals within a 14 day postexposure period. Fly guts were extracted and analyzed with the LC-MS/MS method. The amount of CWA simulant in fly guts decreased with time following exposure but were detectable 14 days following exposure, giving a long window of detectability. In addition to the analysis of CWA simulants, isopropyl methylphosphonic acid, the hydrolysis product of sarin, was also detected in blow flies 14 days post exposure. This work demonstrates the potential to obtain valuable samples from remote or access-restricted areas without risking lives.


Subject(s)
Chemical Warfare Agents , Animals , Calliphoridae , Chemical Warfare Agents/analysis , Chemical Warfare Agents/chemistry , Chromatography, Liquid , Hydrolysis , Tandem Mass Spectrometry/methods
2.
Clin Chem Lab Med ; 58(5): 836-846, 2020 04 28.
Article in English | MEDLINE | ID: mdl-31926066

ABSTRACT

Background Invasive fungal disease is a life-threatening condition that can be challenging to treat due to pathogen resistance, drug toxicity, and therapeutic failure secondary to suboptimal drug concentrations. Frequent therapeutic drug monitoring (TDM) is required for some anti-fungal agents to overcome these issues. Unfortunately, TDM at the institutional level is difficult, and samples are often sent to a commercial reference laboratory for analysis. To address this gap, the first paper spray-mass spectrometry assay for the simultaneous quantitation of five triazoles was developed. Methods Calibration curves for fluconazole, posaconazole, itraconazole, hydroxyitraconazole, and voriconazole were created utilizing plasma-based calibrants and four stable isotopic internal standards. No sample preparation was needed. Plasma samples were spotted on a paper substrate in pre-manufactured plastic cartridges, and the dried plasma spots were analyzed directly utilizing paper spray-mass spectrometry (paper spray MS/MS). All experiments were performed on a Thermo Scientific TSQ Vantage triple quadrupole mass spectrometer. Results The calibration curves for the five anti-fungal agents showed good linearity (R2 = 0.98-1.00). The measured assay ranges (lower limit of quantification [LLOQ]-upper limit of quantitation [ULOQ]) for fluconazole, posaconazole, itraconazole, hydroxyitraconazole, and voriconazole were 0.5-50 µg/mL, 0.1-10 µg/mL, 0.1-10 µg/mL, 0.1-10 µg/mL, and 0.1-10 µg/mL, respectively. The inter- and intra-day accuracy and precision were less than 25% over the respective ranges. Conclusions We developed the first rapid paper spray-MS/MS assay for simultaneous quantitation of five triazole anti-fungal agents in plasma. The method may be a powerful tool for near-point-of-care TDM aimed at improving patient care by reducing the turnaround time and for use in clinical research.


Subject(s)
Antifungal Agents/blood , Dried Blood Spot Testing/methods , Drug Monitoring/methods , Paper , Fluconazole/blood , Humans , Isotope Labeling , Laboratories/standards , Limit of Detection , Reference Standards , Reproducibility of Results , Tandem Mass Spectrometry , Triazoles/blood , Voriconazole/blood
3.
Sci Rep ; 9(1): 10594, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332240

ABSTRACT

Rapid vertebrate diversity evaluation is invaluable for monitoring changing ecosystems worldwide. Wild blow flies naturally recover DNA and chemical signatures from animal carcasses and feces. We demonstrate the power of blow flies as biodiversity monitors through sampling of flies in three environments with varying human influences: Indianapolis, IN and two national parks (the Great Smoky Mountains and Yellowstone). Dissected fly guts underwent vertebrate DNA sequencing (12S and 16S rRNA genes) and fecal metabolite screening. Integrated Nested Laplace Approximation (INLA) was used to determine the most important abiotic factor influencing fly-derived vertebrate richness. In 720 min total sampling time, 28 vertebrate species were identified, with 42% of flies containing vertebrate resources: 23% DNA, 5% feces, and 14% contained both. The species of blow fly used was not important for vertebrate DNA recovery, however the use of female flies versus male flies directly influenced DNA detection. Temperature was statistically relevant across environments in maximizing vertebrate detection (mean = 0.098, sd = 0.048). This method will empower ecologists to test vertebrate community ecology theories previously out of reach due practical challenges associated with traditional sampling.


Subject(s)
Biodiversity , Diptera , Ecological Parameter Monitoring/methods , Vertebrates , Animals , DNA/analysis , DNA/genetics , Feces/chemistry , Female , Indiana , Male , Montana , Population Surveillance/methods , Tennessee , Vertebrates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL