Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 134(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33912919

ABSTRACT

Cytokinesis is the process that separates a cell into two daughter cells at the end of mitosis. Most of our knowledge of cytokinesis comes from overexpression studies, which affects our interpretation of protein function. Gene editing can circumvent this issue by introducing functional mutations or fluorescent probes directly into a gene locus. However, despite its potential, gene editing is just starting to be used in the field of cytokinesis. Here, we discuss the benefits of using gene editing tools for the study of cytokinesis and highlight recent studies that successfully used CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) technology to answer critical questions regarding the function of cytokinesis proteins. We also present methodologies for editing essential genes and discuss how CRISPR interference (CRISPRi) and activation (CRISPRa) can enable precise control of gene expression to answer important questions in the field. Finally, we address the need for gene editing to study cytokinesis in more physiologically relevant contexts. Therefore, this Review provides a roadmap for gene editing to be used in the study of cytokinesis and other cellular processes.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cytokinesis/genetics , Gene Editing , Phenotype
2.
Mol Biol Cell ; 31(11): 1124-1139, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32238082

ABSTRACT

Cytokinesis occurs by the ingression of an actomyosin ring that cleaves a cell into two daughters. This process is tightly controlled to avoid aneuploidy, and we previously showed that active Ran coordinates ring positioning with chromatin. Active Ran is high around chromatin, and forms an inverse gradient to cargo-bound importins. We found that the ring component anillin contains a nuclear localization signal (NLS) that binds to importin and is required for its function during cytokinesis. Here we reveal the mechanism whereby importin binding favors a conformation required for anillin's recruitment to the equatorial cortex. Active RhoA binds to the RhoA-binding domain causing an increase in accessibility of the nearby C2 domain containing the NLS. Importin binding subsequently stabilizes a conformation that favors interactions for cortical recruitment. In addition to revealing a novel mechanism for the importin-mediated regulation of a cortical protein, we also show how importin binding positively regulates protein function.


Subject(s)
Contractile Proteins/metabolism , Cytokinesis/physiology , Karyopherins/metabolism , Contractile Proteins/physiology , HeLa Cells , Humans , Karyopherins/physiology , Microtubules/metabolism , Nuclear Localization Signals , Protein Binding , Spindle Apparatus/metabolism , ran GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...