Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 111(32): 7860-9, 2007 Aug 16.
Article in English | MEDLINE | ID: mdl-17637044

ABSTRACT

A new exact quantum mechanical rovibrational Hamiltonian operator for molecules exhibiting large amplitude inversion and torsion motions is derived. The derivation is based on a division of a molecule into two parts: a frame and a top. The nuclei of the frame only are used to construct a molecular system of axes. The inversion motion of the frame is described in the umbrella-like coordinates, whereas the torsion motion of the top is described by the nonstandard torsion angle defined in terms of the nuclear vectors and one of the molecular axes. The internal coordinates chosen take into account the properties of the inversion and torsion motions. Vibrational s and rotational Omega vectors obtained for the introduced internal coordinates determine the rovibrational tensor G defined by simple scalar products of these vectors. The Jacobian of the transformation from the Cartesian to the internal coordinates considered and the G tensor specify the rovibrational Hamiltonian. As a result, the Hamiltonian for penta-atomic molecules like NH2OH with one inverter is presented and a complete set of the formulas necessary to write down the Hamiltonian of more complex molecules, like NH2NH2 with two inverters, is reported. The approach considered is essentially general and sufficiently simple, as demonstrated by derivation of a polyatomic molecule Hamiltonian in polyspherical coordinates, obtained by other methods with much greater efforts.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 58(4): 601-28, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11991486

ABSTRACT

A new exact quantum mechanical rovibrational Hamiltonian operator for ammonia-like molecules is derived. The Hamiltonian is constructed in a molecular system of axes, such that its z' axis makes a trisection of the pyramidal angle formed by three bond vectors with the vertex on the central atom. The introduced set of the internal rovibrational coordinates is adapted to facilitate a convenient description of the inversion motion. These internal coordinates and the molecular axis system have a remarkable property, namely, the internal vibrational angular momentum of the molecule equals zero. This property significantly reduces the Coriolis coupling and simplifies the form of the Hamiltonian. The correctness of this Hamiltonian is proved by a numerical procedure. The orthogonal Radau vectors allowing us to define a similar molecular axis system and the internal coordinates are considered. The Hamiltonian for the Radau parameterization takes a form simple enough to carry out effectively variational calculations of the molecular rovibrational states. Under the appropriate choice of the variational basis functions, the Hamiltonian matrix elements are fully factorizable and do not have any singularities. A convenient method of symmetrization of the basis functions is proposed.


Subject(s)
Ammonia/chemistry , Spectrophotometry, Infrared/methods , Biophysical Phenomena , Biophysics , Models, Molecular , Models, Theoretical , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...