Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 17453, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36261498

ABSTRACT

The integration of fast and power efficient electro-absorption modulators on silicon is of utmost importance for a wide range of applications. To date, Franz-Keldysh modulators formed of bulk Ge or GeSi have been widely adopted due to the simplicity of integration required by the modulation scheme. Nevertheless, to obtain operation for a wider range of wavelengths (O to C band) a thick stack of Ge/GeSi layers forming quantum wells is required, leading to a dramatic increase in the complexity linked to sub-micron waveguide coupling. In this work, we present a proof-of-concept integration between micro-metric waveguides, through the butt-coupling of a [Formula: see text] thick N-rich silicon nitride (SiN) waveguide with a [Formula: see text] thick silicon waveguide for O-band operation. A numerical analysis is conducted for the design of the waveguide-to-waveguide interface, with the aim to minimize the power coupling loss and back-reflection levels. The theoretical results are compared to the measured data, demonstrating a coupling loss level of [Formula: see text] for TE and TM polarisation. Based on the SiN-SOI interconnection simulation strategy, the simulation results of a quantum-confined Stark effect (QCSE) stack waveguide coupled to a SiN waveguide are then presented.

2.
Sensors (Basel) ; 22(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35684846

ABSTRACT

In this review we present some of the recent advances in the field of silicon nitride photonic integrated circuits. The review focuses on the material deposition techniques currently available, illustrating the capabilities of each technique. The review then expands on the functionalisation of the platform to achieve nonlinear processing, optical modulation, nonvolatile optical memories and integration with III-V materials to obtain lasing or gain capabilities.


Subject(s)
Photons , Silicon Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...