Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(9): e19665, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809787

ABSTRACT

This is the first study reporting the presence of airborne nano-sized plastic particles in the bronchoalveolar lavage fluid (BALF) samples of patients undergoing diagnostic bronchoscopy. The results represent the plastic pollution content in the lower airways of the residents of Northern Europe. Airborne micro- and nanoplastic particles (MP/NPs) are widely dispersed worldwide and intrude on human organisms to various extents, with the respiratory tract being the first line of exposure. The amounts of inhaled MP/NPs, their fate in the human respiratory tract, and the effects on the health of human airways and other exposed organs remain largely unknown. In this clinical study, human BALF samples were assessed by means of optical and transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM-EDX). Results show that MP/NPs levels vary in the interval of 0.14-12.8 particles per 100 ml of BALF and are present in all samples tested, mainly in a fragmented form. External pollution by MP/NPs was excluded by carefully choosing methodology and equipment. This finding is a timely addition of valuable information and stimulates further research into the biological effects of inhaled MP/NPs.

2.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762288

ABSTRACT

A high temperature-adapted bacteriophage, vB_PtoS_NIIg3.2 (NIIg3.2), was isolated in Lithuania from compost heaps using Parageobacillus toebii strain NIIg-3 as a host for phage propagation. Furthermore, NIIg3.2 was active against four strains of Geobacillus thermodenitrificans, and it infected the host cells from 50 to 80 °C. Transmission electron microscopy analysis revealed siphovirus morphology characterized by an isometric head (~59 nm in diameter) and a noncontractile tail (~226 nm in length). The double-stranded DNA genome of NIIg3.2 (38,970 bp) contained 71 probable protein-encoding genes and no genes for tRNA. In total, 29 NIIg3.2 ORFs were given a putative functional annotation, including those coding for the proteins responsible for DNA packaging, virion structure/morphogenesis, phage-host interactions, lysis/lysogeny, replication/regulation, and nucleotide metabolism. Based on comparative phylogenetic and bioinformatic analysis, NIIg3.2 cannot be assigned to any genus currently recognized by ICTV and potentially represents a new one within siphoviruses. The results of this study not only extend our knowledge about poorly explored thermophilic bacteriophages but also provide new insights for further investigation and understanding the evolution of Bacilllus-group bacteria-infecting viruses.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Phylogeny , Lysogeny , Bacterial Typing Techniques , Cell Death
3.
Viruses ; 15(8)2023 08 04.
Article in English | MEDLINE | ID: mdl-37632033

ABSTRACT

We report a detailed characterization of five thermophilic bacteriophages (phages) that were isolated from compost heaps in Vilnius, Lithuania using Geobacillus thermodenitrificans strains as the hosts for phage propagation. The efficiency of plating experiments revealed that phages formed plaques from 45 to 80 °C. Furthermore, most of the phages formed plaques surrounded by halo zones, indicating the presence of phage-encoded bacterial exopolysaccharide (EPS)-degrading depolymerases. Transmission Electron Microscopy (TEM) analysis revealed that all phages were siphoviruses characterized by an isometric head (from ~63 nm to ~67 nm in diameter) and a non-contractile flexible tail (from ~137 nm to ~150 nm in length). The genome sequencing resulted in genomes ranging from 38,161 to 39,016 bp. Comparative genomic and phylogenetic analysis revealed that all the isolated phages had no close relatives to date, and potentially represent three new genera within siphoviruses. The results of this study not only improve our knowledge about poorly explored thermophilic bacteriophages but also give new insights for further investigation of thermophilic and/or thermostable enzymes of bacterial viruses.


Subject(s)
Bacteriophages , Composting , Geobacillus , Phylogeny , Bacterial Typing Techniques , Bacteriophages/genetics , Geobacillus/genetics
4.
Nanoscale Adv ; 5(14): 3705-3716, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37441259

ABSTRACT

Bionanoparticles comprised of naturally occurring monomers are gaining interest in the development of novel drug transportation systems. Here we report on the stabilisation, cellular uptake, and macrophage clearance of nanotubes formed from the self-assembling gp053 tail sheath protein of the vB_EcoM_FV3 bacteriophage. To evaluate the potential of the bacteriophage protein-based nanotubes as therapeutic nanocarriers, we investigated their internalisation into colorectal cancer cell lines and professional macrophages that may hinder therapeutic applications by clearing nanotube carriers. We fused the bacteriophage protein with a SNAP-tag self-labelling enzyme and demonstrated that its activity is retained in assembled nanotubes, indicating that such carriers can be applied to deliver therapeutic biomolecules. Under physiological conditions, the stabilisation of the nanotubes by PEGylation was required to prevent aggregation and yield a stable solution with uniform nano-sized structures. Colorectal carcinoma cells from primary and metastatic tumours internalized SNAP-tag-carrying nanotubes with different efficiencies. The nanotubes entered HCT116 cells via dynamin-dependent and SW480 cells - via dynamin- and clathrin-dependent pathways and were accumulated in lysosomes. Meanwhile, peritoneal macrophages phagocytosed the nanotubes in a highly efficient manner through actin-dependent mechanisms. Macrophage clearance of nanotubes was enhanced by inflammatory activation but was dampened in macrophages isolated from aged animals. Altogether, our results demonstrate that gp053 nanotubes retained the cargo's enzymatic activity post-assembly and had the capacity to enter cancer cells. Furthermore, we emphasise the importance of evaluating the nanocarrier clearance by immune cells under conditions mimicking a cancerous environment.

5.
Discov Nano ; 18(1): 86, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37382743

ABSTRACT

Group III-V semiconductor multi-junction solar cells are widely used in concentrated-sun and space photovoltaic applications due to their unsurpassed power conversion efficiency and radiation hardness. To further increase the efficiency, new device architectures rely on better bandgap combinations over the mature GaInP/InGaAs/Ge technology, with Ge preferably replaced by a 1.0 eV subcell. Herein, we present a thin-film triple-junction solar cell AlGaAs/GaAs/GaAsBi with 1.0 eV dilute bismide. A compositionally step-graded InGaAs buffer layer is used to integrate high crystalline quality GaAsBi absorber. The solar cells, grown by molecular-beam epitaxy, achieve 19.1% efficiency at AM1.5G spectrum, 2.51 V open-circuit voltage, and 9.86 mA/cm2 short-circuit current density. Device analysis identifies several routes to significantly improve the performance of the GaAsBi subcell and of the overall solar cell. This study is the first to report on multi-junctions incorporating GaAsBi and is an addition to the research on the use of bismuth-containing III-V alloys in photonic device applications.

6.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298271

ABSTRACT

The structures of the Caudovirales phage tails are key factors in determining the host specificity of these viruses. However, because of the enormous structural diversity, the molecular anatomy of the host recognition apparatus has been elucidated in only a number of phages. Klebsiella viruses vB_KleM_RaK2 (RaK2) and phiK64-1, which form a new genus Alcyoneusvirus according to the ICTV, have perhaps one of the most structurally sophisticated adsorption complexes of all tailed viruses described to date. Here, to gain insight into the early steps of the alcyoneusvirus infection process, the adsorption apparatus of bacteriophage RaK2 is studied in silico and in vitro. We experimentally demonstrate that ten proteins, gp098 and gp526-gp534, previously designated as putative structural/tail fiber proteins (TFPs), are present in the adsorption complex of RaK2. We show that two of these proteins, gp098 and gp531, are essential for attaching to Klebsiella pneumoniae KV-3 cells: gp531 is an active depolymerase that recognizes and degrades the capsule of this particular host, while gp098 is a secondary receptor-binding protein that requires the coordinated action of gp531. Finally, we demonstrate that RaK2 long tail fibers consist of nine TFPs, seven of which are depolymerases, and propose a model for their assembly.


Subject(s)
Bacteriophages , Myoviridae , Adsorption , Bacteriophages/genetics , Klebsiella pneumoniae , Host Specificity , Genome, Viral
7.
Materials (Basel) ; 15(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35888313

ABSTRACT

Bismuth films with thicknesses between 6 and ∼30 nm were grown on Si (111) substrate by molecular beam epitaxy (MBE). Two main phases of bismuth - α-Bi and ß-Bi - were identified from high-resolution X-ray diffraction (XRD) measurements. The crystal structure dependencies on the layer thicknesses of these films were analyzed. ß-Bi layers were epitaxial and homogenous in lateral regions that are greater than 200 nm despite the layer thickness. Further, an increase in in-plane 2θ values showed the biaxial compressive strain. For comparison, α-Bi layers are misoriented in six in-plane directions and have ß-Bi inserts in thicker layers. That leads to smaller (about 60 nm) lateral crystallites which are compressively strained in all three directions. Raman measurement confirmed the XRD results. The blue-sift of Raman signals compared with bulk Bi crystals occurs due to the phonon confinement effect, which is larger in the thinnest α-Bi layers due to higher compression.

8.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889632

ABSTRACT

Perovskite-type La:BaSnO3 (LBSO) has been drawing considerable attention due to its high electron mobility and optical transparency. Its thin film electrical properties, however, remain inferior to those of single crystals. This work investigates the thermal post-treatment process of films deposited using the metalorganic chemical vapor deposition method to improve the electrical properties of different stoichiometry films, and demonstrates the modification of thin film's structural properties using short and excessive annealing durations in vacuum conditions. Using vacuum post-treatment, we demonstrate the improvement of electrical properties in Ba-rich, near-stoichiometric, and Sn-rich samples with a maximum electron mobility of 116 cm2V-1s-1 at r.t. However, the improvement of electrical properties causes surface morphology and internal structural changes, which depend on thin film composition. At temperatures of 900 °C-1400 °C the volatile nature of LBSO constituting elements is described, which reveals possible deterioration mechanisms of thin LBSO air. At higher than 1200 °C, LBSO film's decomposition rate increases exponentially. Thin film structure evolution and previously unreported decomposition is demonstrated by Ba and La diffusion to the substrate, and by evaporation of SnO-SnOx species.

9.
Toxics ; 10(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35878311

ABSTRACT

The effects of air pollution on the general public received much attention recently. Personal exposure and deposition fraction of aerosol particles were studied in Vilnius, Lithuania, focusing on individuals working in an office and driving to work. Aerosol monitoring in the urban background was found to give an indication of the minimum concentrations of particulate matter (PM) expected at urban roads, as these correspond to the lowest PM concentrations measured there. In March 2021, PM2.5 concentrations at the urban background monitoring station reached values above the annual limit of 5 µg/m3 the World Health Organization in 50% of cases. Our study shows significant differences in exposure to air pollution in a car cabin and in a modern office. According to the multiple-path particle dosimetry model, the exposure of the person in the office is about 14 times lower than driving a car, where the minute deposition dose for PM1 is 0.072 µg/min for the period when the PM2.5 concentration in the urban background reaches 10 µg/m³. Compared to the PM2.5 mass concentration at the urban background station, the mean PM2.5 concentration in the vehicle reaches values that are 2-3 times higher. During the working day, when driving takes less than 10% of the time considered (commuting plus working), PM exposure during driving accounts for about 80% of the PM exposure caused by PM concentration in the office.

10.
Sensors (Basel) ; 22(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35684630

ABSTRACT

The results of colossal magnetoresistance (CMR) properties of La1-xSrxMnyO3 (LSMO) films grown by the pulsed injection MOCVD technique onto an Al2O3 substrate are presented. The grown films with different Sr (0.05 ≤ x ≤ 0.3) and Mn excess (y > 1) concentrations were nanostructured with vertically aligned column-shaped crystallites spread perpendicular to the film plane. It was found that microstructure, resistivity, and magnetoresistive properties of the films strongly depend on the strontium and manganese concentration. All films (including low Sr content) exhibit a metal−insulator transition typical for manganites at a certain temperature, Tm. The Tm vs. Sr content dependence for films with a constant Mn amount has maxima that shift to lower Sr values with the increase in Mn excess in the films. Moreover, the higher the Mn excess concentration in the films, the higher the Tm value obtained. The highest Tm values (270 K) were observed for nanostructured LSMO films with x = 0.17−0.18 and y = 1.15, while the highest low-field magnetoresistance (0.8% at 50 mT) at room temperature (290 K) was achieved for x = 0.3 and y = 1.15. The obtained low-field MR values were relatively high in comparison to those published in the literature results for lanthanum manganite films prepared without additional insulating oxide phases. It can be caused by high Curie temperature (383 K), high saturation magnetization at room temperature (870 emu/cm3), and relatively thin grain boundaries. The obtained results allow to fabricate CMR sensors for low magnetic field measurement at room temperature.

11.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269273

ABSTRACT

The remote epitaxy of GaN epilayers on GaN/sapphire templates was studied by using different graphene interlayer types. Monolayer, bilayer, double-stack of monolayer, and triple-stack of monolayer graphenes were transferred onto GaN/sapphire templates using a wet transfer technique. The quality of the graphene interlayers was examined by Raman spectroscopy. The impact of the interlayer type on GaN nucleation was analyzed by scanning electron microscopy. The graphene interface and structural quality of GaN epilayers were studied by transmission electron microscopy and X-ray diffraction, respectively. The influence of the graphene interlayer type is discussed in terms of the differences between remote epitaxy and van der Waals epitaxy. The successful exfoliation of GaN membrane is demonstrated.

12.
Sensors (Basel) ; 22(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35062569

ABSTRACT

The results of colossal magnetoresistance (CMR) properties of La0.83Sr0.17Mn1.21O3 (LSMO) films grown by pulsed injection MOCVD technique onto various substrates are presented. The films with thicknesses of 360 nm and 60 nm grown on AT-cut single crystal quartz, polycrystalline Al2O3, and amorphous Si/SiO2 substrates were nanostructured with column-shaped crystallites spread perpendicular to the film plane. It was found that morphology, microstructure, and magnetoresistive properties of the films strongly depend on the substrate used. The low-field MR at low temperatures (25 K) showed twice higher values (-31% at 0.7 T) for LSMO/quartz in comparison to films grown on the other substrates (-15%). This value is high in comparison to results published in literature for manganite films prepared without additional insulating oxides. The high-field MR measured up to 20 T at 80 K was also the highest for LSMO/quartz films (-56%) and demonstrated the highest sensitivity S = 0.28 V/T at B = 0.25 T (voltage supply 2.5 V), which is promising for magnetic sensor applications. It was demonstrated that Mn excess Mn/(La + Sr) = 1.21 increases the metal-insulator transition temperature of the films up to 285 K, allowing the increase in the operation temperature of magnetic sensors up to 363 K. These results allow us to fabricate CMR sensors with predetermined parameters in a wide range of magnetic fields and temperatures.

13.
Environ Res ; 207: 112218, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34655608

ABSTRACT

This study investigates potential influence of urban trees on black carbon (BC) removal by Norway spruce and silver birch along with the BC formation, mass concentration in air, and source apportionment. The main sources of BC in urban areas are transport, household and industry. BC concentrations monitored in urban background station in Vilnius (Lithuania) showed that biomass burning was a significant contributor to BC emissions even during warm period of the year. Therefore, BC emission levels were determined for the most common biomass fuels (mixed wood pellets, oak, ash, birch and spruce firewood) and two types of agro-biomass (triticale and rapeseed straw pellets) burned in modern and old heating systems. The highest emissions were obtained for biomass fuels especially birch firewood. BC aerosol particles produced by the condensation mechanism during the combustion processes were found in all samples taken from the leaf surface. The short-term effect of BC exposure on photosynthetic pigments (chlorophyll a and b; and carotenoids) in the foliage of one-year-old Norway spruce and silver birch seedlings was evaluated by the experiment carried out in the phytotron greenhouse. The seedlings showed different short-term responses to BC exposure. All treatments applied in the phytotron greenhouse resulted in lower chlorophyll content in spruce foliage compared to natural conditions but not differed for birch seedlings. However, the exposure of BC particles on the spruce and birch seedlings in the phytotron increased the content of photosynthetic pigments compared to the control seedlings in the phytotron. Overall, urban trees can help improve air quality by reducing BC levels through dry deposition on tree foliage, and needle-like trees are more efficient than broad-leaved trees in capturing BC. Nevertheless, a further study could assess the longer-term effects of BC particles on tree biochemical and chemical reactions.


Subject(s)
Air Pollutants , Picea , Air Pollutants/analysis , Betula , Carbon/analysis , Chlorophyll A , Soot
14.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34835795

ABSTRACT

We report on the construction of functionalized nanotubes based on tail sheath protein 041 from vB_KleM-RaK2 bacteriophage. The truncated 041 protein (041Δ200) was fused with fluorescent proteins GFP and mCherry or amidohydrolase YqfB. The generated chimeric proteins were successfully synthesized in E. coli BL21 (DE3) cells and self-assembled into tubular structures. We detected the fluorescence of the structures, which was confirmed by stimulated emission depletion microscopy. When 041Δ200GFP and 041Δ200mCherry were coexpressed in E. coli BL21 (DE3) cells, the formed nanotubes generated Förster resonance energy transfer, indicating that both fluorescent proteins assemble into a single nanotube. Chimeric 041Δ200YqfB nanotubes possessed an enzymatic activity, which was confirmed by hydrolysis of N4-acetyl-2'-deoxycytidine. The enzymatic properties of 041Δ200YqfB were similar to those of a free wild-type YqfB. Hence, we conclude that 041-based chimeric nanotubes have the potential for the development of delivery vehicles and targeted imaging and are applicable as scaffolds for biocatalysts.

15.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298953

ABSTRACT

A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using Pantoea agglomerans strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a gene encoding a preQ0 DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC-MS/MS analysis indicates 2'-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of Pantoea phages. Thus, the data presented in this study provide new information on Pantoea-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.


Subject(s)
DNA, Viral , Genome, Viral , Guanosine , Open Reading Frames , Pantoea/virology , Siphoviridae , Viral Proteins , DNA, Viral/genetics , DNA, Viral/metabolism , Guanosine/analogs & derivatives , Guanosine/chemistry , Guanosine/metabolism , Siphoviridae/genetics , Siphoviridae/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
16.
Anticancer Res ; 41(5): 2363-2370, 2021 May.
Article in English | MEDLINE | ID: mdl-33952461

ABSTRACT

BACKGROUND/AIM: Liposomal Doxorubicin (lipDOX) and free Doxorubicin (DOX) are reported to exhibit similar antitumor efficacy. However, cellular internalization mechanisms of lipDOX are still a subject of controversy. MATERIALS AND METHODS: Intact and permeabilized cells were exposed for short time to lipDOX and free DOX and drug intracellular content was evaluated by flow cytometry. Then, the antiproliferative capacities of lipDOX and free DOX were compared by the leukocyte nadir test in mice in vivo. RESULTS: The fluorescence increase was 11.2-fold higher in intact cells and 19.7-fold higher in permeabilized cells after exposure to free DOX as compared to lipDOX. Mice injected with DOX showed pronounced antiproliferative activity with a leukocyte count decrease to 2.8±0.65 k/µl (p<0.01) - an effect significantly stronger than that in the lipDOX group. CONCLUSION: Intact and permeabilized cells internalize free DOX manifold faster than lipDOX. The LipDOX formulation does not induce a remarkable leukocyte nadir effect in vivo.


Subject(s)
Apoptosis/drug effects , Doxorubicin/analogs & derivatives , Doxorubicin/pharmacology , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/pharmacology , Biological Transport , Cell Line, Tumor , Cell Membrane Permeability , Cell Survival/drug effects , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Endocytosis , Humans , Mice, Inbred C57BL , Models, Biological , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Time Factors
17.
Microorganisms ; 9(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807116

ABSTRACT

A cold-adapted siphovirus, vB_PagS_AAS23 (AAS23) was isolated in Lithuania using the Pantoea agglomerans strain AUR for the phage propagation. The double-stranded DNA genome of AAS23 (51,170 bp) contains 92 probable protein encoding genes, and no genes for tRNA. A comparative sequence analysis revealed that 25 of all AAS23 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. Based on the phylogenetic analysis, AAS23 has no close relationship to other viruses publicly available to date and represents a single species of the genus Sauletekiovirus within the family Drexlerviridae. The phage is able to form plaques in bacterial lawns even at 4 °C and demonstrates a depolymerase activity. Thus, the data presented in this study not only provides the information on Pantoea-infecting bacteriophages, but also offers novel insights into the diversity of cold-adapted viruses and their potential to be used as biocontrol agents.

18.
Arch Virol ; 165(9): 2111-2114, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32556600

ABSTRACT

A novel myovirus, vB_PagM_AAM22 (AAM22), was isolated in Lithuania using Pantoea agglomerans as the host for phage propagation. The 49,744-bp genome of AAM22 has a G + C content of 48.4% and contains 96 probable protein-encoding genes and no genes for tRNA. In total, 34 ORFs were given a putative functional annotation, including genes associated with virion morphogenesis, DNA metabolism, and phage-host interactions. Based on comparative phylogenetic analysis, AAM22 cannot be assigned to any genus currently recognized by the ICTV and is a potential candidate to form a new genus within the family Myoviridae.


Subject(s)
Bacteriophages/isolation & purification , Genome, Viral , Myoviridae/isolation & purification , Pantoea/virology , Bacteriophages/classification , Bacteriophages/genetics , Base Composition , Base Sequence , DNA, Viral/genetics , Myoviridae/classification , Myoviridae/genetics , Open Reading Frames , Phylogeny
19.
Nanoscale Res Lett ; 15(1): 121, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32451638

ABSTRACT

The distribution of alloyed atoms in semiconductors often deviates from a random distribution which can have significant effects on the properties of the materials. In this study, scanning transmission electron microscopy techniques are employed to analyze the distribution of Bi in several distinctly MBE grown GaAs1-xBix alloys. Statistical quantification of atomic-resolution HAADF images, as well as numerical simulations, are employed to interpret the contrast from Bi-containing columns at atomically abrupt (001) GaAs-GaAsBi interface and the onset of CuPt-type ordering. Using monochromated EELS mapping, bulk plasmon energy red-shifts are examined in a sample exhibiting phase-separated domains. This suggests a simple method to investigate local GaAsBi unit-cell volume expansions and to complement standard X-ray-based lattice-strain measurements. Also, a single-variant CuPt-ordered GaAsBi sample grown on an offcut substrate is characterized with atomic scale compositional EDX mappings, and the order parameter is estimated. Finally, a GaAsBi alloy with a vertical Bi composition modulation is synthesized using a low substrate rotation rate. Atomically, resolved EDX and HAADF imaging shows that the usual CuPt-type ordering is further modulated along the [001] growth axis with a period of three lattice constants. These distinct GaAsBi samples exemplify the variety of Bi distributions that can be achieved in this alloy, shedding light on the incorporation mechanisms of Bi atoms and ways to further develop Bi-containing III-V semiconductors.

20.
Viruses ; 12(4)2020 04 23.
Article in English | MEDLINE | ID: mdl-32340233

ABSTRACT

A novel cold-adapted siphovirus, vB_PagS_AAS21 (AAS21), was isolated in Lithuania using Pantoea agglomerans as the host for phage propagation. AAS21 has an isometric head (~85 nm in diameter) and a non-contractile flexible tail (~174 × 10 nm). With a genome size of 116,649 bp, bacteriophage AAS21 is the largest Pantoea-infecting siphovirus sequenced to date. The genome of AAS21 has a G+C content of 39.0% and contains 213 putative protein-encoding genes and 29 genes for tRNAs. A comparative sequence analysis revealed that 89 AAS21 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 63 AAS21 ORFs were functionally annotated, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. Proteomic analysis led to the experimental identification of 19 virion proteins, including 11 that were predicted by bioinformatics approaches. Based on comparative phylogenetic analysis, AAS21 cannot be assigned to any genus currently recognized by ICTV and may represents a new branch of viruses within the family Siphoviridae.


Subject(s)
Bacteriophages/classification , Bacteriophages/physiology , Pantoea/virology , Adaptation, Biological , Bacteriophages/ultrastructure , Cold Temperature , Genome, Viral , Genomics/methods , Open Reading Frames , Phylogeny , Siphoviridae
SELECTION OF CITATIONS
SEARCH DETAIL
...