Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Molecules ; 28(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570808

ABSTRACT

CeO2-TiO2 is an important mixed oxide due to its catalytic properties, particularly in heterogeneous photocatalysis. This study presents a straightforward method to obtain 1D TiO2 nanostructures decorated with CeO2 nanoparticles at the surface. As the precursor, we used H2Ti3O7 nanoribbons prepared from sodium titanate nanoribbons by ion exchange. Two cerium sources with an oxidation state of +3 and +4 were used to obtain mixed oxides. HAADF-STEM mapping of the Ce4+-modified nanoribbons revealed a thin continuous layer at the surface of the H2Ti3O7 nanoribbons, while Ce3+ cerium ions intercalated partially between the titanate layers. The phase composition and morphology changes were monitored during calcination between 620 °C and 960 °C. Thermal treatment led to the formation of CeO2 nanoparticles on the surface of the TiO2 nanoribbons, whose size increased with the calcination temperature. The use of Ce4+ raised the temperature required for converting H2Ti3O7 to TiO2-B by approximately 200 °C, and the temperature for the formation of anatase. For the Ce3+ batch, the presence of cerium inhibited the conversion to rutile. Analysis of cerium oxidation states revealed the existence of both +4 and +3 in all calcined samples, regardless of the initial cerium oxidation state.

2.
Front Chem ; 11: 1173910, 2023.
Article in English | MEDLINE | ID: mdl-37179781

ABSTRACT

Catalytic materials are the greatest challenge for the commercial application of water electrolysis (WEs) and fuel cells (FCs) as clean energy technologies. There is a need to find an alternative to expensive and unavailable platinum group metal (PGM) catalysts. This study aimed to reduce the cost of PGM materials by replacing Ru with RuO2 and lowering the amount of RuO2 by adding abundant and multifunctional ZnO. A ZnO@RuO2 composite in a 10:1 molar ratio was synthesized by microwave processing of a precipitate as a green, low-cost, and fast method, and then annealed at 300°C and 600°C to improve the catalytic properties. The physicochemical properties of the ZnO@RuO2 composites were investigated by X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The electrochemical activity of the samples was investigated by linear sweep voltammetry in acidic and alkaline electrolytes. We observed good bifunctional catalytic activity of the ZnO@RuO2 composites toward HER and OER in both electrolytes. The improved bifunctional catalytic activity of the ZnO@RuO2 composite by annealing was discussed and attributed to the reduced number of bulk oxygen vacancies and the increased number of established heterojunctions.

3.
Chemosphere ; 330: 138603, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37028714

ABSTRACT

In the recycling of end-of-life rare-earth magnets, the recovery of non-rare earth constituents is often neglected. In the present study, strong cation and anion exchange resins were tested batchwise for the recovery of the non-rare-earth constituents of permanent magnets (copper, cobalt, manganese, nickel and iron) from synthetic aqueous and ethanolic solutions. The cation exchange resin recovered most of metal ions from aqueous and ethanolic feeds, whereas the anion exchange resin could selectively recover copper and iron from ethanolic feeds. The highest uptake of iron and copper was found for 80 vol% and 95 vol% multi-element ethanolic feeds, respectively. A similar trend in selectivity of the anion resin was observed in breakthrough curve studies. Batch experiments, UV-Vis, FT-IR and XPS studies were performed to elucidate the ion exchange mechanism. The studies indicate that the formation of chloro complexes of copper and their exchange by the (hydrogen) sulfate counter ions of the resin have an important role in the selective uptake of copper from the 95 vol% ethanolic feed. Iron(II) was largely oxidized to iron(III) in ethanolic solutions and was expected to be recovered by the resin in the form of iron(II) and iron(III) complexes. The moisture content of the resin did not have a significant role on the selectivity for copper and iron.


Subject(s)
Anion Exchange Resins , Metals, Rare Earth , Copper , Iron , Magnets , Spectroscopy, Fourier Transform Infrared , Ferrous Compounds
4.
Materials (Basel) ; 15(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499992

ABSTRACT

This paper reports a detailed study of crystal structure and dielectric properties of ruthenium-substituted calcium-copper titanates (CaCu3Ti4-xRuxO12, CCTRO). A series of three samples with different stoichiometry was prepared: CaCu3Ti4-xRuxO12, x = 0, 1 and 4, abbreviated as CCTO, CCT3RO and CCRO, respectively. A detailed structural analysis of CCTRO samples was done by the Rietveld refinement of XRPD data. The results show that, regardless of whether Ti4+ or Ru4+ ions are placed in B crystallographic position in AA'3B4O12 (CaCu3Ti4-xRuxO12) unit cell, the crystal structure remains cubic with Im3¯ symmetry. Slight increases in the unit cell parameters, cell volume and interatomic distances indicate that Ru4+ ions with larger ionic radii (0.62 Å) than Ti4+ (0.605 Å) are incorporated in the CaCu3Ti4-xRuxO12 crystal lattice. The structural investigations were confirmed using TEM, HRTEM and ADF/STEM analyses, including EDXS elemental mapping. The effect of Ru atoms share in CaCu3Ti4-xRuxO12 samples on their electrical properties was determined by impedance and dielectric measurements. Results of dielectric measurements indicate that one atom of ruthenium per CaCu3Ti4-xRuxO12 unit cell transforms dielectric CCTO into conductive CCT3RO while preserving cubic crystal structure. Our findings about CCTO and CCT3RO ceramics promote them as ideal tandem to overcome the problem of stress on dielectric-electrode interfaces in capacitors.

5.
Chemosphere ; 287(Pt 1): 131977, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34454219

ABSTRACT

Potable water supply system in major countries still uses a large proportion of asbestos-cement (AC) pipes for fresh drinking water delivery. Generally, after installation and initial purging, the AC tubes are believed to self-passivate by calcite scale and bio-film, especially when conveying hard water. However, the overall performance of AC tubes after decades of operation is significantly reduced and is still mainly unknown. In the current research, we investigated the AC water supply tube after 56 years of operation with high-hardness conveyed water. Our results show that asbestos fibres are emitted from degraded AC pipes as a result of wall softening due to calcium leaching from hydrated cementitious materials, resulting in the loss of mechanical stability. Although the water pumped into the system is not considered aggressive, the seasonal variations of water temperature and chemistry results in an interplay of calcite scaling and Ca leaching, the latter being the dominating process. By comparing the experimental observations with the long-term chemistry reports of the water supplied through the pipes, a positive relationship was established between the temperature and quality of the conveyed water with the corrosion and the calcite scale formation, which are dictating the emission of the fibres into the drinking water. In addition to the health risks posed by asbestos, these processes have many adverse effects on drinking water supply, such as pipe malfunction and destruction resulting in water loss, reduction of hydraulic capacity, microbial proliferation, and water quality deterioration, a topic of interest for global water industries process.


Subject(s)
Asbestos , Drinking Water , Construction Materials , Corrosion , Water Supply
6.
Life (Basel) ; 13(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36676065

ABSTRACT

Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8-25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.

7.
Nanomaterials (Basel) ; 11(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34443790

ABSTRACT

The paper reports the synthesis of nickel tellurides via a mechanochemical method from elemental precursors. NiTe, NiTe2, and Ni2Te3 were prepared by milling in stainless steel vials under nitrogen, using milling times from 1 h to 12 h. The products were characterized by powder X-ray diffraction (pXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), UV-VIS spectrometry, and thermal analysis (TGA and DSC). The products were obtained in the form of aggregates, several hundreds of nanometers in size, consisting of smaller nanosized crystallites. The magnetic measurements revealed a ferromagnetic behavior at room temperature. The band gap energies calculated using Tauc plots for NiTe, NiTe2, and Ni2Te3 were 3.59, 3.94, and 3.70 eV, respectively. The mechanochemical process has proved to be a simple and successful method for the preparation of binary nickel tellurides, avoiding the use of solvents, toxic precursors, and energy-consuming reaction conditions.

8.
Nanomaterials (Basel) ; 11(8)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34443817

ABSTRACT

WnO3n-1 nanotiles, with multiple stoichiometries within one nanotile, were synthesized via the chemical vapour transport method. They grow along the [010] crystallographic axis, with the thickness ranging from a few tens to a few hundreds of nm, with the lateral size up to several µm. Distinct surface corrugations, up to a few 10 nm deep appear during growth. The {102}r crystallographic shear planes indicate the WnO3n-1 stoichiometries. Within a single nanotile, six stoichiometries were detected, namely W16O47 (WO2.938), W15O44 (WO2.933), W14O41 (WO2.928), W13O38 (WO2.923), W12O35 (WO2.917), and W11O32 (WO2.909), with the last three never being reported before. The existence of oxygen vacancies within the crystallographic shear planes resulted in the observed non-zero density of states at the Fermi energy.

9.
Phys Chem Chem Phys ; 22(38): 22078-22095, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32985642

ABSTRACT

Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1-xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm-2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec-1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (0001[combining macron]) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm-2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.

10.
Nanoscale ; 12(28): 15102-15114, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32644095

ABSTRACT

Quasi-two-dimensional tungsten oxide structures, which nucleate by epitaxial growth on W19O55 nanowires (NW) and grow as thin platelets, were identified. Both the nanowires and the platelets accommodate oxygen deficiency by the formation of crystallographic shear planes. Stoichiometric phases, W18O53 (WO2.944), W17O50 (WO2.941), W16O47 (WO2.938), W15O44 (WO2.933), W14O41 (WO2.929), W10O29 (WO2.9), and W9O26 (WO2.889), syntactically grow inside a single platelet. These layered crystals show a new kind of polycrystallinity, where crystallographic shear planes accommodate oxygen deficiency and at the same time stabilize this multi-stoichiometric structure.

11.
Chemosphere ; 249: 126531, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32213392

ABSTRACT

The mineral composition and surface physico-chemical properties, i.e., specific surface area (SSA), cation exchange capacity (CEC), and surface charge of recent sediments and their submicron mineral fractions from different sedimentological environments of the Eastern Adriatic were investigated. The influence of organic matter on these properties was also investigated. It was shown that illite and mixed-layered clay minerals (MLCM) were ubiquitous and showed no size-related preferences while the occurrence of smectites, chlorites, and kaolinites varied. The smectites content increased and the chlorites decreased slightly with decreasing particle size. The sediments from the carbonate-rich environment contained no smectites or chlorites and had the highest kaolinite content. For the first time, in the recent sediments of the Adriatic Sea the poorly- and the well-crystallised kaolinite (Kl and KlD) were distinguished. While Kl predominates in the submicron-sized fraction, KlD occurred only in micron-sized fractions. Authigenic aragonite of submicron-sized was determined in a distinct environment of the semi-enclosed marine lake. The differences in mineral composition and particle size of sediments and their separated fractions were reflected in a wide range of the SSA and CEC values obtained. The highest values of SSA and CEC were determined in the phyllosilicates-rich submicron-sized fractions range, 109 m2g-1 and 87.4 cmol+kg-1, respectively. The submicron-sized fraction from aragonite-rich marine lake showed the lowest values of SSA (56.4 m2g-1) and CEC (38.8 cmol+kg-1), which are still unexpectedly high for carbonate-rich environments. The removal of organic matter resulted in a significant increase in SSA and CEC, up to 150% and 76%, respectively.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Calcium Carbonate , Cations/chemistry , Clay , Italy , Kaolin/chemistry , Lakes , Minerals/analysis , Minerals/chemistry , Surface Properties
12.
Sci Rep ; 9(1): 16305, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31705047

ABSTRACT

Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The "up"- and the "down"-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.

13.
RSC Adv ; 9(30): 17165-17178, 2019 May 29.
Article in English | MEDLINE | ID: mdl-35519876

ABSTRACT

ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g-1, compared to ZnO (10.4 mA g-1) and ZnO/F127 photoanodes (20 mA g-1) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm-2. A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron-hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.

14.
Phys Chem Chem Phys ; 20(46): 29221-29235, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30427330

ABSTRACT

Transformations between amorphous and crystalline apatite mechanistically govern some of the most essential processes in bone metabolism, including biomineralization and bone remodeling. Fundamental understanding of this phase transition can help us gain control over the formation and dissolution of boney tissues in vivo and utilize that knowledge for various therapeutic ends. Crystallization of hydroxyapatite (HAp) and two tricalcium phosphate (TCP) polymorphs from the metastable precursor, amorphous calcium phosphate (ACP) was here studied kinetically and mechanistically using thermal analyses, X-ray diffraction and Fourier-transform infrared spectroscopy. Crystallization was detected in the differential thermal analysis as the exothermic peak at 639.5 °C at the slowest heating regimen of 5 °C min-1, while a combination of different kinetics models, including Augis-Bennett, Borchardt-Daniels, Johnson-Mehl-Avrami, Kissinger, Ozawa and Piloyan, yielded activation energies in the 435-450 kJ mol-1 range. Dehydrated ACP required a significant energy input to transform to HAp, thus indirectly proving the key role that structural water plays in this process in a biological setting. The phase transformation at high temperatures involved preformed nuclei and was solely due to their 3D growth, contrasting the edge-controlled nucleation derived earlier as the mechanism of growth in the solution. Crystallization was in both cases accompanied by the formation of needle-shape crystals of HAp through aggregation of ultrafine spherical units of ACP. Relationship between crystallinity and the heating rate was detected only for the initially amorphous structure, indicating a more intense and coherent lattice ordering process in annealed ACP than in HAp. Despite that, crystallization disobeyed the rule of inverse proportionality between the thermal energy required for the relaxation of defects and the level of strain, as the recovery rate of the initially poorly crystalline HAp was higher than that of ACP.

15.
Mater Sci Eng C Mater Biol Appl ; 93: 49-60, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30274082

ABSTRACT

Copper nanoparticles (Cu NPs) have proven to own excellent antimicrobial efficacy, but the problems of easy oxidation and aggregation limit their practical application. Here, nanocomposite based on polyaniline (PANI) and Cu NPs solved this problem and brought additional physicochemical properties that are markedly advantageous for antimicrobial applications. Current work exploits this potential, to examine its time- and concentration-dependent antimicrobial activity, employing E. coli, S. aureus, and C. albicans as a model microbial species. Regarding the presence of polaronic charge carriers in the fibrous polyaniline network, effects of Cu NPs' size and their partially oxidized surfaces (the data were confirmed by HRTEM, FESEM, XRD, Raman and XPS analysis), as well as rapid copper ions release, Cu-PANI nanocomposite showed efficient bactericidal and fungicidal activities at the concentrations ≤1 ppm, within the incubation time of 2 h. Beside the quantitative analysis, the high levels of cellular disruption for all tested microbes were evidenced by atomic force microscopy. Moreover, the minimum inhibitory and bactericidal concentrations of the Cu-PANI nanocomposite were lower than those reported for other nanocomposites. Using such low concentrations is recognized as a good way to avoid its toxicity toward the environment. For this purpose, Cu-PANI nanocomposite is tested for its genotoxicity and influence on the oxidative status of the human cells in vitro.


Subject(s)
Aniline Compounds , Anti-Infective Agents , Blood Cells/metabolism , Copper , DNA Damage , Escherichia coli/growth & development , Nanocomposites , Staphylococcus aureus/growth & development , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Blood Cells/cytology , Copper/chemistry , Copper/pharmacology , Drug Evaluation, Preclinical , Humans , Nanocomposites/chemistry , Nanocomposites/therapeutic use
16.
J Colloid Interface Sci ; 508: 95-104, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28822865

ABSTRACT

This study describes and examines the structural and morphological properties of the hierarchically organized, aragonite cuttlebone forms for the common cuttlefish (Sepia officinalis, L.), including its main structural parts, the dorsal shield, and the chambers. Specifically, it complements the mechanism for the self-organized formation of aragonite, identifies the presence, and determines the role of soluble organic matrix (SOM) proteins in the morphogenesis of the cuttlebone's biomineral structures on the nanoscale. The structure and morphology of the cuttlebone were examined using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), and their thermal properties by thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA). Proteins from the SOM were investigated using two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), nano liquid chromatography tandem mass spectrometry (nano-LC ESI-MS) and Edman degradation. The results showed that the cuttlebone exhibited several diverse biomineral structures characterized by complex morphologies. Their formation is governed by the organic matrix, particularly proteins, which at the earliest stage of development provide templates for the initial extracellular nucleation of the aragonite nanocrystals. This is followed by a bottom-up morphogenesis, based on the nanoscale oriented aggregation and coalescence of primarily formed aragonite nanograins, which results in the hierarchically organized, nanostructured, aragonite forms. The molecular masses of the most pronounced SOM proteins from the dorsal shield were about 10, 15, 40 and 60kDa, while from the chambers they were 10, 20, 25, 30 and 45kDa. Peptide fragments corresponding to Sep7, Sep8, chitin synthase 1, ficoline-2, polyubiquitin and the ubiquitin carboxyl-terminal hydrolase 32-like protein were detected in the SOM, with these proteins having functional properties related to the biomineralization processes. In general, there are mostly acidic proteins present in alternatively glycosylated forms, which are common attributes of biomineralization-related proteins.

17.
Chemosphere ; 168: 786-797, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27836270

ABSTRACT

This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past.


Subject(s)
Calcium Carbonate/analysis , Environmental Monitoring , Geologic Sediments/chemistry , Lakes/chemistry , Strontium/analysis , Trace Elements/analysis , Water Pollution/analysis , Bismuth/analysis , Cadmium/analysis , Calcium Carbonate/chemistry , Copper/analysis , Iron , Mediterranean Region , Minerals , Molybdenum/analysis , Oxidation-Reduction , Sulfides , Tin/analysis , Titanium/analysis , Uranium/analysis , Zinc/analysis
18.
Mater Sci Eng C Mater Biol Appl ; 68: 746-757, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27524076

ABSTRACT

Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.


Subject(s)
Durapatite , Materials Testing , Nanotubes, Carbon/chemistry , Animals , Cell Line , Durapatite/chemical synthesis , Durapatite/chemistry , Durapatite/pharmacology , Hot Temperature , Mice , Nanotubes, Carbon/ultrastructure
19.
J Colloid Interface Sci ; 457: 35-42, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26151565

ABSTRACT

Structurally and morphologically different colloidal manganese oxide solids, including manganosite (MnO), bixbyite (Mn2O3) and hausmannite (Mn(2+)[Mn(3+)]2O4), were obtained through the initial biomimetically induced precipitation of a uniform, nanostructured and micron-sized rhodochrosite (MnCO3) precursor phase and their subsequent thermally controlled transformation into oxide structures in air and Ar/H2 atmospheres. The structures and morphology of the obtained precipitates were investigated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). Their surface properties were investigated by electrophoretic mobilities (EPM) and specific surface area (SSA) measurements. The results showed that the structurally diverse, micron-sized, spherical manganese oxide particles exhibit unusual and fascinating nanostructured surface morphologies. These were developed through the coalescence of an initially formed, nanosized, crystalline, manganese carbonate precursor phase which, during the heating, transformed into coarser, irregular, elongated, micron-sized, manganese oxide solids. It was also shown that structural transformations and morphological tailoring were followed by significant changes in the physico-chemical properties of the obtained solids. Their SSA values were drastically reduced as a result of the progressive coalescence at the particle surfaces occurring at higher temperatures. The isoelectric points (IEPs) of the obtained manganese oxides were diverse. This is the consequence of their range of crystal-chemical properties that governed the complex physico-chemical processes at the interface of the manganese oxide solid and the aqueous solution. The results of this study may lead to a conceptually new method for the synthesis of high-performance, nanostructured, manganese oxide solids with desirable structural, morphological and surface properties.

20.
Beilstein J Nanotechnol ; 6: 831-44, 2015.
Article in English | MEDLINE | ID: mdl-25977854

ABSTRACT

The influence of the reaction conditions during the transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons on the phase composition, the morphology, the appearance of the nanoribbon surfaces and their optical properties was investigated. The transformations were performed (i) through a heat treatment in oxidative and reductive atmospheres in the temperature range of 400-650 °C, (ii) through a hydrothermal treatment in neutral and basic environments at 160 °C, and (iii) through a microwave-assisted hydrothermal treatment in a neutral environment at 200 °C. Scanning electron microscopy investigations showed that the hydrothermal processing significantly affected the nanoribbon surfaces, which became rougher, while the transformations based on calcination in either oxidative or reductive atmospheres had no effect on the morphology or on the surface appearance of the nanoribbons. The transformations performed in the reductive atmosphere, an NH3(g)/Ar(g) flow, and in the ammonia solution led to nitrogen doping. The nitrogen content increased with an increasing calcination temperature, as was determined by X-ray photoelectron spectroscopy. According to electron paramagnetic resonance measurements the calcination in the reductive atmosphere also resulted in a partial reduction of Ti(4+) to Ti(3+). The photocatalytic performance of the derived TiO2 NRs was estimated on the basis of the photocatalytic oxidation of isopropanol. After calcinating in air, the photocatalytic performance of the investigated TiO2 NRs increased with an increased content of anatase. In contrast, the photocatalytic performance of the N-doped TiO2 NRs showed no dependence on the calcination temperature. An additional comparison showed that the N-doping significantly suppressed the photocatalytic performance of the TiO2 NRs, i.e., by 3 to almost 10 times, in comparison with the TiO2 NRs derived by calcination in air. On the other hand, the photocatalytic performance of the hydrothermally derived TiO2 NRs was additionally improved by a subsequent heat treatment in air.

SELECTION OF CITATIONS
SEARCH DETAIL
...