Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Stroke ; 19(11): 1404-10, 1988 Nov.
Article in English | MEDLINE | ID: mdl-3188125

ABSTRACT

We determined regional cerebral blood flow (rCBF) using [125I]HIPDm [N,N,N'-trimethyl-N'-(2-hydroxy-3-methyl-5-iodobenzyl)-1,3-propanediamin e] and [125I]iodoantipyrine autoradiography under control and pathologic conditions (hypercapnia [acidosis], hypocapnia [alkalosis], and disrupted blood-brain barrier) conditions in 35 rats. In control rats, HIPDm rCBF (indicator fractionation method, n = 5) was lower than the corresponding IAP rCBF (diffusible indicator method, n = 4), most notably in the infratentorial regions and subcortical nuclei. In hypercapnia, rCBF increased by 100% and 37% in the HIPDm (n = 5) and IAP (n = 5) groups, respectively. In hypocapnia, IAP rCBF (n = 4) decreased 34% but HIPDm rCBF (n = 4) did not change. Following disruption of the blood-brain barrier by intracarotid infusion of mannitol in eight rats, both radiotracers (HIPDm n = 4, IAP n = 4) showed decreased rCBF to regions of disruption as defined by trypan blue extravasation. Our work indicates that modeling HIPDm uptake to quantify rCBF using the indicator fractionation method will underestimate blood flow and that HIPDm kinetics are influenced by compartmental pH dynamics that will limit the accuracy of this method in quantifying rCBF in pathologic conditions.


Subject(s)
Antipyrine/analogs & derivatives , Cerebrovascular Circulation , Iodobenzenes , Acidosis, Respiratory/physiopathology , Alkalosis, Respiratory/physiopathology , Animals , Blood-Brain Barrier , Hypertension/metabolism , Hypertension/physiopathology , Hypotension/metabolism , Hypotension/physiopathology , Iodine Radioisotopes , Rats , Rats, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL
...