Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Luminescence ; 39(1): e4673, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38286598

ABSTRACT

YAG:Ce and LuAG:Ce ceramics are widely used as scintillator materials that convert high-energy radiation into visible light. For the practical application of such compounds, short decay times are a necessity. One way of shortening the existing decay times even more is to change the local environment of emitting ions by means of doping the matrix with additional elements, for example, boron or magnesium. Furthermore, boron ions also can help absorb gamma rays more efficiently, therefore improving overall applicability. Due to the aforementioned reasons, YAG and LuAG ceramics doped with cerium, boron, and magnesium were synthesized. Initial amorphous powders have been obtained by means of sol-gel synthesis and pressed into pellets under isostatic pressure and finally calcinated to form crystalline ceramics. The effects of boron and magnesium doping on the morphological, structural, and luminescence properties were investigated. The key results showed that doping with boron has indeed shortened the decay times of the garnet pellets. Overall, boron doping of ceramics is a relatively new research area; however, it is rather promising as it helps both to improve the luminescence properties and to increase particle growth rate.


Subject(s)
Boron , Magnesium , Boron/chemistry , Magnesium/chemistry , Luminescence , Ceramics , Ions
2.
Gels ; 9(6)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37367157

ABSTRACT

We present a crack-free optically active SiO2 glass-composite material containing YAG:Ce synthesized via a modified sol-gel technique. A glass-composite material consisting of yttrium aluminum garnet doped with Ce3+ (YAG:Ce) was entrapped into a SiO2 xerogel. This composite material was prepared using a sol-gel technique with modified gelation and a drying process to obtain crack-free optically active SiO2 glass. The concentration of the YAG:Ce was from 0.5 to 2.0 wt%. All synthesized samples were characterized via X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, confirming their exceptional quality and structural integrity. The luminescence properties of the obtained materials were studied. Overall, the prepared samples' excellent structural and optical quality makes them great candidates for further investigation, or even potential practical application. Furthermore, boron-doped YAG:Ce glass was synthesized for the first time.

3.
Heliyon ; 8(11): e11386, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36387496

ABSTRACT

Yttrium aluminum garnet doped with europium with an additional impurity phase of yttrium vanadate doped europium has been prepared in different ways: synthesized by a sol-gel route and mechanically mixed in a mortar. The obtained samples were characterized by X-ray diffraction analysis, and scanning electron microscopy. Photoluminescence spectra were recorded to understand the role of the impurity phase in the garnet's optical properties. The impurity phase showed a significant contribution to the optical properties of Y3Al5O12:1%Eu.

4.
Materials (Basel) ; 15(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35160993

ABSTRACT

The structural state and crystal structure of Lu(1-x)ScxFeO3 (0 ≤ x ≤ 1) compounds prepared by a chemical route based on a modified sol-gel method were investigated using X-ray diffraction, Raman spectroscopy, as well as scanning electron microscopy. It was observed that chemical doping with Sc ions led to a structural phase transition from the orthorhombic structure to the hexagonal structure via a wide two-phase concentration region of 0.1 < x < 0.45. An increase in scandium content above 80 mole% led to the stabilization of the non-perovskite bixbyite phase specific for the compound ScFeO3. The concentration stability of the different structural phases, as well as grain morphology, were studied depending on the chemical composition and synthesis conditions. Based on the data obtained for the analyzed samples, a composition-dependent phase diagram was constructed.

5.
Materials (Basel) ; 13(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957733

ABSTRACT

Interest in magnetic nanoparticles is primarily due to their practical use. In this work, for the production of nanocrystalline powders of pure and gadolinium doped iron oxides, the extraction-pyrolytic method (EPM) was used. As a precursor, either iron-containing extract (iron (III) caproate in caproic acid) or its mixture with gadolinium-containing extract (gadolinium (III) valerate in valeric acid) was used. The mixed precursor contained 0.5 mol %, 2.5 mol %, 12.5 mol %, 50 mol %, and 75 mol % gadolinium in relation to the iron content. The formation of iron oxide phases, depending on the preparation conditions, was investigated. According to the results obtained, it was demonstrated that the presence of more than 2.5 mol % gadolinium additive in the mixed precursor inhibits the magnetite-to-hematite transformation process during thermal treatment. Produced samples were characterized by XRD and SEM methods, and the magnetic properties were studied.

6.
Chempluschem ; 85(7): 1504-1510, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32644307

ABSTRACT

The cost of the rare-earth metal cerium means that preparation of YAG : Ce is expensive. To overcome this, the garnet could partially be replaced by cheaper alternatives, while retaining the original properties of YAG : Ce. Composites with different polymers such as polyethylene glycol diacrylate (M280) and dipentaerythrityl hexaacrylate (M600) were therefore studied. YAG : Ce and boron nitride were added into the polymer matrix in order to obtain composites with enhanced thermal conductivity, necessary for high-optical-density applications. The physical properties of the composites were measured by using XRD, DSC, SEM, and NMR, and the most important characteristics for LED materials such as emission, excitation, decay time and quantum efficiency were analyzed. An LED prototype was developed to test and demonstrate the composites for practical applications. That developed device exhibited optical properties very close to those comprising a commercial garnet prototype, which was also developed for comparison. The main advantage of the proposed technology is that by using 2 time less the amount of YAG : Ce, almost the same light output was obtained compared to commercial phosphors.

7.
Materials (Basel) ; 13(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679787

ABSTRACT

In this work, the high temperature oxidation behavior of Al71Co29 and Al76Co24 alloys (concentration in at.%) is presented. The alloys were prepared by controlled arc-melting of Co and Al granules in high purity argon. The as-solidified alloys were found to consist of several different phases, including structurally complex m-Al13Co4 and Z-Al3Co phases. The high temperature oxidation behavior of the alloys was studied by simultaneous thermal analysis in flowing synthetic air at 773-1173 K. A protective Al2O3 scale was formed on the sample surface. A parabolic rate law was observed. The rate constants of the alloys have been found between 1.63 × 10-14 and 8.83 × 10-12 g cm-4 s-1. The experimental activation energies of oxidation are 90 and 123 kJ mol-1 for the Al71Co29 and Al76Co24 alloys, respectively. The oxidation mechanism of the Al-Co alloys is discussed and implications towards practical applications of these alloys at high temperatures are provided.

8.
Materials (Basel) ; 13(7)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290150

ABSTRACT

Nanocrystalline La0.9A0.1MnO3 (where A is Li, Na, K) powders were synthesized by a combustion method. The powders used to prepare nanoceramics were fabricated via a high-temperature sintering method. The structure and morphology of all compounds were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). It was found that the size of the crystallites depended on the type of alkali ions used. The high-pressure sintering method kept the nanosized character of the grains in the ceramics, which had a significant impact on their physical properties. Magnetization studies were performed for both powder and ceramic samples in order to check the impact of the alkali ion dopants as well as the sintering pressure on the magnetization of the compounds. It was found that, by using different dopants, it was possible to strongly change the magnetic characteristics of the manganites.

9.
Med Hypotheses ; 136: 109526, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31855681

ABSTRACT

The aim of this study was to investigate the distribution of different morphological features in different layers of lyophilized adipose tissue. In this work the scanning electron microscopy (SEM) was adopted for investigation of lyophilized adipose tissue taken from obese patients. The adipose tissue was taken from subcutaneous (SAT), preperitoneal (PAT) and visceral (VAT) layers of adipose tissue. The obtained results of the main microstructural features provided information about morphological features of subcutaneous, preperitoneal and visceral layers in obese people. The obtained SEM results possibly could be used for the estimation of metabolic symptoms and prediction different diseases. The SEM method was never used before to investigate morphology of SAT, PAT and VAT layers of lyophilized human adipose tissue.


Subject(s)
Adipose Tissue/ultrastructure , Freeze Drying , Intra-Abdominal Fat/physiopathology , Metabolic Syndrome/physiopathology , Obesity/physiopathology , Subcutaneous Fat/physiopathology , Female , Humans , Intra-Abdominal Fat/ultrastructure , Male , Metabolic Syndrome/complications , Metabolic Syndrome/diagnosis , Microscopy, Electron, Scanning , Obesity/complications , Obesity/diagnosis , Subcutaneous Fat/ultrastructure
10.
Sci Rep ; 9(1): 10417, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31320659

ABSTRACT

We studied magnetostatic response of the Bi0.9La0.1FeO3- KBr composites (BLFO-KBr) consisting of nanosized (≈100 nm) ferrite Bi0.9La0.1FeO3 (BLFO) conjugated with fine grinded ionic conducting KBr. When the fraction of KBr is rather small (less than 15 wt%) the magnetic response of the composite is very weak and similar to that observed for the BLFO (pure KBr matrix without Bi1-xLaxFeO3 has no magnetic response as anticipated). However, when the fraction of KBr increases above 15%, the magnetic response of the composite changes substantially and the field dependence of magnetization reveals ferromagnetic-like hysteresis loop with a remanent magnetization about 0.14 emu/g and coercive field about 1.8 Tesla (at room temperature). Nothing similar to the ferromagnetic-like hysteresis loop can be observed in Bi1-zLazFeO3 ceramics with z ≤ 0.15, which magnetization quasi-linearly increases with magnetic field. Different physical mechanisms were considered to explain the unusual experimental results for BLFO-KBr nanocomposites, but only those among them, which are highly sensitive to the interaction of antiferromagnetic Bi0.9La0.1FeO3 with ionic conductor KBr, can be relevant.

SELECTION OF CITATIONS
SEARCH DETAIL
...