Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Brain Commun ; 6(3): fcae184, 2024.
Article in English | MEDLINE | ID: mdl-38846532

ABSTRACT

Amyotrophic lateral sclerosis is an age-dependent cell type-selective degenerative disease. Genetic studies indicate that amyotrophic lateral sclerosis is part of a spectrum of disorders, ranging from spinal muscular atrophy to frontotemporal dementia that share common pathological mechanisms. Amyotrophic lateral sclerosis Type 8 is a familial disease caused by mis-sense mutations in VAPB. VAPB is localized to the cytoplasmic surface of the endoplasmic reticulum, where it serves as a docking point for cytoplasmic proteins and mediates inter-organelle interactions with the endoplasmic reticulum membrane. A gene knock-in model of amyotrophic lateral sclerosis Type 8 based on the VapBP56S mutation and VapB gene deletion has been generated in rats. These animals display a range of age-dependent phenotypes distinct from those previously reported in mouse models of amyotrophic lateral sclerosis Type 8. A loss of motor neurones in VapBP56S/+ and VapBP56S/P56S animals is indicated by a reduction in the number of large choline acetyl transferase-staining cells in the spinal cord. VapB-/- animals exhibit a relative increase in cytoplasmic TDP-43 levels compared with the nucleus, but no large protein aggregates. Concomitant with these spinal cord pathologies VapBP56S/+ , VapBP56S/P56S and VapB-/- animals exhibit age-dependent changes in paw placement and exerted pressures when traversing a CatWalk apparatus, consistent with a somatosensory dysfunction. Extramotor dysfunction is reported in half the cases of motor neurone disease, and this is the first indication of an associated sensory dysfunction in a rodent model of amyotrophic lateral sclerosis. Different rodent models may offer complementary experimental platforms with which to understand the human disease.

2.
Cells ; 10(12)2021 12 02.
Article in English | MEDLINE | ID: mdl-34943911

ABSTRACT

Synapses are particularly susceptible to the effects of advancing age, and mitochondria have long been implicated as organelles contributing to this compartmental vulnerability. Despite this, the mitochondrial molecular cascades promoting age-dependent synaptic demise remain to be elucidated. Here, we sought to examine how the synaptic mitochondrial proteome (including strongly mitochondrial associated proteins) was dynamically and temporally regulated throughout ageing to determine whether alterations in the expression of individual candidates can influence synaptic stability/morphology. Proteomic profiling of wild-type mouse cortical synaptic and non-synaptic mitochondria across the lifespan revealed significant age-dependent heterogeneity between mitochondrial subpopulations, with aged organelles exhibiting unique protein expression profiles. Recapitulation of aged synaptic mitochondrial protein expression at the Drosophila neuromuscular junction has the propensity to perturb the synaptic architecture, demonstrating that temporal regulation of the mitochondrial proteome may directly modulate the stability of the synapse in vivo.


Subject(s)
Aging/genetics , Mitochondrial Proteins/genetics , Muscular Dystrophies/genetics , Proteome/genetics , Synapses/genetics , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Drosophila/genetics , Drosophila/physiology , Gene Expression Regulation/genetics , Humans , Mice , Mitochondria/genetics , Muscular Dystrophies/pathology , Neuromuscular Junction/genetics , Neuromuscular Junction/pathology , Neurons/metabolism
3.
Biomolecules ; 11(10)2021 10 12.
Article in English | MEDLINE | ID: mdl-34680132

ABSTRACT

Live imaging of neuromuscular junctions (NMJs) in situ has been constrained by the suitability of ligands for inert vital staining of motor nerve terminals. Here, we constructed several truncated derivatives of the tetanus toxin C-fragment (TetC) fused with Emerald Fluorescent Protein (emGFP). Four constructs, namely full length emGFP-TetC (emGFP-865:TetC) or truncations comprising amino acids 1066-1315 (emGFP-1066:TetC), 1093-1315 (emGFP-1093:TetC) and 1109-1315 (emGFP-1109:TetC), produced selective, high-contrast staining of motor nerve terminals in rodent or human muscle explants. Isometric tension and intracellular recordings of endplate potentials from mouse muscles indicated that neither full-length nor truncated emGFP-TetC constructs significantly impaired NMJ function or transmission. Motor nerve terminals stained with emGFP-TetC constructs were readily visualised in situ or in isolated preparations using fibre-optic confocal endomicroscopy (CEM). emGFP-TetC derivatives and CEM also visualised regenerated NMJs. Dual-waveband CEM imaging of preparations co-stained with fluorescent emGFP-TetC constructs and Alexa647-α-bungarotoxin resolved innervated from denervated NMJs in axotomized WldS mouse muscle and degenerating NMJs in transgenic SOD1G93A mouse muscle. Our findings highlight the region of the TetC fragment required for selective binding and visualisation of motor nerve terminals and show that fluorescent derivatives of TetC are suitable for in situ morphological and physiological characterisation of healthy, injured and diseased NMJs.


Subject(s)
Microscopy, Confocal , Neuromuscular Junction/diagnostic imaging , Tetanus Toxin/toxicity , Animals , Animals, Newborn , Axons/drug effects , Axons/metabolism , Binding Sites , Fluorescence , Green Fluorescent Proteins/metabolism , Humans , Mice, Inbred C57BL , Motor Neurons/drug effects , Motor Neurons/metabolism , Nerve Tissue/drug effects , Nerve Tissue/metabolism , Neuromuscular Junction/drug effects , Neuromuscular Junction/pathology , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects
4.
Brain Commun ; 3(3): fcab152, 2021.
Article in English | MEDLINE | ID: mdl-34396110

ABSTRACT

Primary hippocampal cell cultures are routinely used as an experimentally accessible model platform for the hippocampus and brain tissue in general. Containing multiple cell types including neurons, astrocytes and microglia in a state that can be readily analysed optically, biochemically and electrophysiologically, such cultures have been used in many in vitro studies. To what extent the in vivo environment is recapitulated in primary cultures is an on-going question. Here, we compare the transcriptomic profiles of primary hippocampal cell cultures and intact hippocampal tissue. In addition, by comparing profiles from wild type and the PrP 101LL transgenic model of prion disease, we also demonstrate that gene conservation is predominantly conserved across genetically altered lines.

5.
Cell Rep ; 29(11): 3620-3635.e7, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31825840

ABSTRACT

The translation initiation repressor 4E-BP2 is deamidated in the brain on asparagines N99/N102 during early postnatal brain development. This post-translational modification enhances 4E-BP2 association with Raptor, a central component of mTORC1 and alters the kinetics of excitatory synaptic transmission. We show that 4E-BP2 deamidation is neuron specific, occurs in the human brain, and changes 4E-BP2 subcellular localization, but not its disordered structure state. We demonstrate that deamidated 4E-BP2 is ubiquitinated more and degrades faster than the unmodified protein. We find that enhanced deamidated 4E-BP2 degradation is dependent on Raptor binding, concomitant with increased association with a Raptor-CUL4B E3 ubiquitin ligase complex. Deamidated 4E-BP2 stability is promoted by inhibiting mTORC1 or glutamate receptors. We further demonstrate that deamidated 4E-BP2 regulates the translation of a distinct pool of mRNAs linked to cerebral development, mitochondria, and NF-κB activity, and thus may be crucial for postnatal brain development in neurodevelopmental disorders, such as ASD.


Subject(s)
Eukaryotic Initiation Factors/metabolism , NF-kappa B/metabolism , Neurons/metabolism , Proteasome Endopeptidase Complex/metabolism , Regulatory-Associated Protein of mTOR/metabolism , Animals , Brain/cytology , Brain/metabolism , Cells, Cultured , Cullin Proteins/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protein Binding , Proteolysis
6.
Pharmacol Res Perspect ; 7(4): e00495, 2019 08.
Article in English | MEDLINE | ID: mdl-31249692

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors are glutamate receptors with key roles in synaptic plasticity, due in part to their Mg2+ mediated voltage-dependence. A large number of genetic variants affecting NMDA receptor subunits have been found in people with a range of neurodevelopmental disorders, including GluN2AN615K (GRIN2AC1845A) in two unrelated individuals with severe epileptic encephalopathy. This missense variant substitutes a lysine in place of an asparagine known to be important for blockade by Mg2+ and other small molecule channel blockers. We therefore measured the impact of GluN2AN615K on a range of NMDA receptor channel blockers using two-electrode voltage clamp recordings made in Xenopus oocytes. We found that GluN2AN615K resulted in block by Mg2+ 1 mmol/L being greatly reduced (89% vs 8%), block by memantine 10 µmol/L (76% vs 27%) and amantadine 100 µmol/L (45% vs 17%) being substantially reduced, block by ketamine 10 µmol/L being modestly reduced (79% vs 73%) and block by dextromethorphan 10 µmol/L being enhanced (45% vs 55%). Coapplying Mg2+ with memantine or amantadine did not reduce the GluN2AN615K block seen with either small molecule. In addition, we measured single-channel conductance of GluN2AN615K-containing NMDA receptors in outside-out patches pulled from Xenopus oocytes, finding a 4-fold reduction in conductance (58 vs 15 pS). In conclusion, the GluN2AN615K variant is associated with substantial changes to important physiological and pharmacological properties of the NMDA receptor. Our findings are consistent with GluN2AN615K having a disease-causing role, and inform potential therapeutic strategies.


Subject(s)
Amino Acid Substitution , Oocytes/cytology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Amantadine/pharmacology , Animals , Dextromethorphan/pharmacology , Female , Humans , Ketamine/pharmacology , Magnesium/pharmacology , Memantine/pharmacology , Mutation, Missense , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate/genetics , Xenopus
7.
Cells ; 8(6)2019 06 12.
Article in English | MEDLINE | ID: mdl-31212843

ABSTRACT

Putative oogonial stem cells (OSCs) have been isolated by fluorescence-activated cell sorting (FACS) from adult human ovarian tissue using an antibody against DEAD-box helicase 4 (DDX4). DDX4 has been reported to be germ cell specific within the gonads and localised intracellularly. White et al. (2012) hypothesised that the C-terminus of DDX4 is localised on the surface of putative OSCs but is internalised during the process of oogenesis. This hypothesis is controversial since it is assumed that RNA helicases function intracellularly with no extracellular expression. To determine whether the C-terminus of DDX4 could be expressed on the cell surface, we generated a novel expression construct to express full-length DDX4 as a DsRed2 fusion protein with unique C- and N-terminal epitope tags. DDX4 and the C-terminal myc tag were detected at the cell surface by immunocytochemistry and FACS of non-permeabilised human embryonic kidney HEK 293T cells transfected with the DDX4 construct. DDX4 mRNA expression was detected in the DDX4-positive sorted cells by RT-PCR. This study clearly demonstrates that the C-terminus of DDX4 can be expressed on the cell surface despite its lack of a conventional membrane-targeting or secretory sequence. These results validate the use of antibody-based FACS to isolate DDX4-positive putative OSCs.


Subject(s)
DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , Extracellular Space/metabolism , Flow Cytometry/methods , Immunohistochemistry/methods , Antibodies/pharmacology , Antibody Specificity , Cell Membrane Permeability/drug effects , Cell Size/drug effects , Epitopes/metabolism , Female , HEK293 Cells , Humans , Oocytes/drug effects , Oocytes/metabolism , Ovary/metabolism , Protein Transport/drug effects , Reproducibility of Results
8.
Cell Rep ; 27(4): 1018-1026.e4, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31018120

ABSTRACT

Normal mammalian brain aging is characterized by the selective loss of discrete populations of dendritic spines and synapses, particularly affecting neuroanatomical regions such as the hippocampus. Although previous investigations have quantified this morphologically, the molecular pathways orchestrating preferential synaptic vulnerability remain to be elucidated. Using quantitative proteomics and healthy rhesus macaque and human patient brain regional tissues, we have comprehensively profiled the temporal expression of the synaptic proteome throughout the adult lifespan in differentially vulnerable brain regions. Comparative profiling of hippocampal (age vulnerable) and occipital cortex (age resistant) synapses revealed discrete and dynamic alterations in the synaptic proteome, which appear unequivocally conserved between species. The generation of these unique and important datasets will aid in delineating the molecular mechanisms underpinning primate brain aging, in addition to deciphering the regulatory biochemical cascades governing neurodegenerative disease pathogenesis.


Subject(s)
Aging , Proteome , Synapses/metabolism , Animals , Hippocampus/metabolism , Humans , Macaca mulatta , Occipital Lobe/metabolism , Proteomics , Signal Transduction , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/physiology
9.
J Physiol ; 597(6): 1691-1704, 2019 03.
Article in English | MEDLINE | ID: mdl-30604514

ABSTRACT

KEY POINTS: NMDA receptors are neurotransmitter-gated ion channels that are critically involved in brain cell communication Variations in genes encoding NMDA receptor subunits have been found in a range of neurodevelopmental disorders. We investigated a de novo genetic variant found in patients with epileptic encephalopathy that changes a residue located in the ion channel pore of the GluN2A NMDA receptor subunit. We found that this variant (GluN2AN615K ) impairs physiologically important receptor properties: it markedly reduces Mg2+ blockade and channel conductance, even for receptors in which one GluN2AN615K is co-assembled with one wild-type GluN2A subunit. Our findings are consistent with the GluN2AN615K mutation being the primary cause of the severe neurodevelopmental disorder in carriers. ABSTRACT: NMDA receptors are ionotropic calcium-permeable glutamate receptors with a voltage-dependence mediated by blockade by Mg2+ . Their activation is important in signal transduction, as well as synapse formation and maintenance. Two unrelated individuals with epileptic encephalopathy carry a de novo variant in the gene encoding the GluN2A NMDA receptor subunit: a N615K missense variant in the M2 pore helix (GRIN2AC1845A ). We hypothesized that this variant underlies the neurodevelopmental disorders in carriers and explored its functional consequences by electrophysiological analysis in heterologous systems. We focused on GluN2AN615K co-expressed with wild-type GluN2 subunits in physiologically relevant triheteromeric NMDA receptors containing two GluN1 and two distinct GluN2 subunits, whereas previous studies have investigated the impact of the variant in diheteromeric NMDA receptors with two GluN1 and two identical GluN2 subunits. We found that GluN2AN615K -containing triheteromers showed markedly reduced Mg2+ blockade, with a value intermediate between GluN2AN615K diheteromers and wild-type NMDA receptors. Single-channel conductance was reduced by four-fold in GluN2AN615K diheteromers, again with an intermediate value in GluN2AN615K -containing triheteromers. Glutamate deactivation rates were unaffected. Furthermore, we expressed GluN2AN615K in cultured primary mouse cortical neurons, observing a decrease in Mg2+ blockade and reduction in current density, confirming that the variant continues to have significant functional impact in neuronal systems. Our results demonstrate that the GluN2AN615K variant has substantial effects on NMDA receptor properties fundamental to the roles of the receptor in synaptic plasticity, even when expressed alongside wild-type subunits. This work strengthens the evidence indicating that the GluN2AN615K variant underlies the disabling neurodevelopmental phenotype in carriers.


Subject(s)
Action Potentials , Epilepsy/genetics , Mutation, Missense , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Magnesium/metabolism , Male , Mice , Neurons/metabolism , Neurons/physiology , Protein Multimerization , Receptors, N-Methyl-D-Aspartate/metabolism
10.
Brain ; 142(1): 80-92, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30544257

ABSTRACT

Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders.


Subject(s)
Epilepsy/genetics , Neurodevelopmental Disorders/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Adolescent , Adult , Aged , Animals , Cells, Cultured , Cerebellar Cortex/metabolism , Child , Child, Preschool , Epilepsy/physiopathology , Female , Genotype , Humans , Infant , Male , Middle Aged , Mutation , Neurodevelopmental Disorders/physiopathology , Phenotype , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Young Adult
11.
Cell Signal ; 51: 266-275, 2018 11.
Article in English | MEDLINE | ID: mdl-30121334

ABSTRACT

Trans-membrane adenylyl cyclase (tmAC) isoforms show markedly distinct regulatory properties that have not been fully explored. AC9 is highly expressed in vital organs such as the heart and the brain. Here, we report that the isoform-specific carboxyl-terminal domain (C2b) of AC9 inhibits the activation of the enzyme by Gs-coupled receptors (GsCR). In human embryonic kidney cells (HEK293) stably overexpressing AC9, cAMP production by AC9 induced upon the activation of endogenous ß-adrenergic and prostanoid GsCRs was barely discernible. Cells expressing AC9 lacking the C2b domain showed a markedly enhanced cAMP response to GsCR. Subsequent studies of the response of AC9 mutants to the activation of GsCR revealed that residues 1268-1276 in the C2b domain were critical for auto-inhibition. Two main species of AC9 of 130 K and ≥ 170 K apparent molecular weight were observed on immunoblots of rodent and human myocardial membranes with NH2-terminally directed anti-AC9 antibodies. The lower molecular weight AC9 band did not react with antibodies directed against the C2b domain. It was the predominant species of AC9 in rodent heart tissue and some of the human samples. There is a single gene for AC9 in vertebrates, moreover, amino acids 957-1353 of the COOH-terminus are encoded by a single exon with no apparent signs of mRNA splicing or editing making it highly unlikely that COOH-terminally truncated AC9 could arise through the processing or editing of mRNA. Thus, deductive reasoning leads to the suggestion that proteolytic cleavage of the C2b auto-inhibitory domain may govern the activation of AC9 by GsCR.


Subject(s)
Adenylyl Cyclases/metabolism , Cell Membrane/metabolism , Gyrus Cinguli/metabolism , Hippocampus/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Adenylyl Cyclases/genetics , Animals , Cyclic AMP/metabolism , HEK293 Cells , Heart Ventricles/metabolism , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mutation , Protein Domains , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
12.
Sci Rep ; 8(1): 6953, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29725036

ABSTRACT

The existence of a population of putative stem cells with germline developmental potential (oogonial stem cells: OSCs) in the adult mammalian ovary has been marked by controversy over isolation methodology and potential for in-vitro transformation, particularly where cell sorting has been based on expression of DEAD box polypeptide 4 (DDX4). This study describes a refined tissue dissociation/fluorescence-activated cell sorting (FACS) protocol for the ovaries of adult women which results in increased cell viability and yield of putative OSCs. A FACS technique incorporating dual-detection of DDX4 with aldehyde dehydrogenase 1 (ALDH1) demonstrates the existence of two sub-populations of small DDX4-positive cells (approx. 7 µm diameter) with ALDH1 activity, distinguished by expression of differentially spliced DDX4 transcripts and of DAZL, a major regulator of germ cell differentiation. These may indicate stages of differentiation from a progenitor population and provide a likely explanation for the expression disparities reported previously. These findings provide a robust basis for the further characterisation of these cells, and exploration of their potential physiological roles and therapeutic application.


Subject(s)
DEAD-box RNA Helicases/analysis , Isoenzymes/analysis , Oogonial Stem Cells/cytology , Ovary/cytology , Retinal Dehydrogenase/analysis , Aldehyde Dehydrogenase 1 Family , Cell Separation/methods , Cells, Cultured , DEAD-box RNA Helicases/genetics , Female , Flow Cytometry/methods , Gene Expression , Humans , Oogonial Stem Cells/metabolism , Ovary/metabolism , Young Adult
13.
Hum Mol Genet ; 27(15): 2614-2627, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29741614

ABSTRACT

Loss of excitatory amino acid transporters (EAATs) has been implicated in a number of human diseases including spinocerebellar ataxias, Alzhiemer's disease and motor neuron disease. EAAT4 and GLAST/EAAT1 are the two predominant EAATs responsible for maintaining low extracellular glutamate levels and preventing neurotoxicity in the cerebellum, the brain region essential for motor control. Here using genetically modified mice we identify new critical roles for EAAT4 and GLAST/EAAT1 as modulators of Purkinje cell (PC) spontaneous firing patterns. We show high EAAT4 levels, by limiting mGluR1 signalling, are essential in constraining inherently heterogeneous firing of zebrin-positive PCs. Moreover mGluR1 antagonists were found to restore regular spontaneous PC activity and motor behaviour in EAAT4 knockout mice. In contrast, GLAST/EAAT1 expression is required to sustain normal spontaneous simple spike activity in low EAAT4 expressing (zebrin-negative) PCs by restricting NMDA receptor activation. Blockade of NMDA receptor activity restores spontaneous activity in zebrin-negative PCs of GLAST knockout mice and furthermore alleviates motor deficits. In addition both transporters have differential effects on PC survival, with zebrin-negative PCs more vulnerable to loss of GLAST/EAAT1 and zebrin-positive PCs more vulnerable to loss of EAAT4. These findings reveal that glutamate transporter dysfunction through elevated extracellular glutamate and the aberrant activation of extrasynaptic receptors can disrupt cerebellar output by altering spontaneous PC firing. This expands our understanding of disease mechanisms in cerebellar ataxias and establishes EAATs as targets for restoring homeostasis in a variety of neurological diseases where altered cerebellar output is now thought to play a key role in pathogenesis.


Subject(s)
Cerebellum/metabolism , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 4/genetics , Purkinje Cells/physiology , Animals , Ataxia/genetics , Cell Survival/genetics , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 4/metabolism , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Purkinje Cells/cytology , Receptors, Metabotropic Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
14.
BMC Genomics ; 19(1): 318, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29720086

ABSTRACT

BACKGROUND: CRISPR/Cas9 enables the targeting of genes in zygotes; however, efficient approaches to create loxP-flanked (floxed) alleles remain elusive. RESULTS: Here, we show that the electroporation of Cas9, two gRNAs, and long single-stranded DNA (lssDNA) into zygotes, termed CLICK (CRISPR with lssDNA inducing conditional knockout alleles), enables the quick generation of floxed alleles in mice and rats. CONCLUSIONS: The high efficiency of CLICK provides homozygous knock-ins in oocytes carrying tissue-specific Cre, which allows the one-step generation of conditional knockouts in founder (F0) mice.


Subject(s)
Genetic Engineering/methods , Alleles , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Injections , Mice , Mice, Knockout , Zygote/metabolism
15.
Sci Rep ; 7(1): 17467, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234100

ABSTRACT

Close contacts between the endoplasmic reticulum membrane and the mitochondrial outer membrane facilitate efficient transfer of lipids between the organelles and coordinate Ca2+ signalling and stress responses. Changes to this coupling is associated with a number of metabolic disorders and neurodegenerative diseases including Alzheimer's, Parkinson's and motor neuron disease. The distance between the two membranes at regions of close apposition is below the resolution of conventional light microscopy, which makes analysis of these interactions challenging. Here we describe a new bifluorescence complementation (BiFC) method that labels a subset of ER-mitochondrial associations in fixed and living cells. The total number of ER-mitochondria associations detected by this approach increases in response to tunicamycin-induced ER stress, serum deprivation or reduced levels of mitofusin 2 (MFN2). This method will facilitate the analysis of dynamic interactions between the ER and mitochondrial membranes.


Subject(s)
Endoplasmic Reticulum/metabolism , Luminescent Proteins/metabolism , Microscopy, Fluorescence/methods , Mitochondria/metabolism , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Endoplasmic Reticulum Stress , HEK293 Cells , Humans , Immunohistochemistry , Luminescent Proteins/genetics , Mice , Microscopy, Confocal/methods , Transfection
16.
Mol Neurodegener ; 12(1): 77, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29078798

ABSTRACT

BACKGROUND: Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. METHODS: The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. RESULTS: Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints - highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. CONCLUSIONS: Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo.


Subject(s)
Mitochondria/metabolism , Nerve Degeneration/physiopathology , Neurons/metabolism , Synapses/metabolism , Animals , Drosophila , Female , Humans , Male , Mice , Mitochondria/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neurons/pathology , Proteomics , Rats , Rats, Sprague-Dawley , Sheep , Synapses/pathology
17.
Wellcome Open Res ; 2: 20, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28459106

ABSTRACT

Background: The N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate receptor that has important roles in synaptogenesis, synaptic transmission, and synaptic plasticity. Recently, a large number of rare genetic variants have been found in NMDAR subunits in people with neurodevelopmental disorders, and also in healthy individuals. One such is the GluN2AR586K variant, found in a person with intellectual disability. Identifying the functional consequences, if any, of such variants allows their potential contribution to pathogenesis to be assessed. Here, we assessed the effect of the GluN2AR586K variant on NMDAR pore properties. Methods: We expressed recombinant NMDARs with and without the GluN2AR586K variant in Xenopus laevis oocytes and in primary cultured mouse neurons, and made electrophysiological recordings assessing Mg2+ block, single-channel conductance, mean open time and current density. Results: The GluN2AR586K variant was not found to influence any of the properties assessed. Conclusions: Our findings suggest it is unlikely that the GluN2AR586K variant contributes to the pathogenesis of neurodevelopmental disorder.

18.
Lancet ; 385 Suppl 1: S65, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-26312887

ABSTRACT

UNLABELLED: Background GRIN2A encodes the GluN2A subunit of the NMDA receptor (NMDAR), an ionotropic glutamate receptor that has important roles in synaptogenesis and synaptic plasticity. Some individuals with early onset epilepsies and intellectual disability carry heterozygous missense mutations in this gene, including a de-novo mutation in the receptor pore region (GluN2A(N615K)). We hypothesised that this mutation underlies the carrier's brain disorder and sought to explore its functional consequences. METHODS: We made two-electrode voltage clamp recordings from Xenopus laevis oocytes expressing GluN1/GluN2A(N615K) (N615K) NMDARs and compared them with wild-type (WT) NMDARs to assess the mutation's effect on potency of inhibition by Mg(2+) and other channel blockers. We then used whole-cell patch-clamping to evaluate NMDAR-mediated currents in mouse primary cortical pyramidal neurons transfected with either GluN2A(WT) or GluN2A(N651K) subunits. Means were compared by use of independent two-tailed t tests. FINDINGS: In oocytes, Mg(2+) (1 mM) block at -60 mV was significantly decreased (N615K [n=13], mean 5% [SE 8] vs WT [n=15], 89 [4]; p<0·0001). Furthermore, in N615K (n=17) and WT (n=17) oocytes, block by 10 µM memantine was also reduced (mean 26% [6] vs 75 [7], p<0·0001) as was block by 100 µM amantadine (18% [4] vs 44 [12], p<0·0001). Block by ketamine (N615K, n=14; WT, n=14) was not significantly affected, whereas block by dextromethorphan was increased (N615K [n=9], 56% [8] vs WT [n=8], 44 [6]; p=0·003). In N615K (n=10) and WT (n=10) neurons we observed a significant decrease in Mg(2+) sensitivity (49% [18] vs 95 [5], p<0·0001) and a significant decrease in current density (42 pA/pF [19] vs 61 [20], p=0·044). INTERPRETATION: This study suggests that the disease-associated mutation GluN2A(N615K) has substantial effects on NMDAR inhibition by both endogenous and exogenous channel blockers, and on NMDA current density. It is plausible that these changes underlie the carrier's phenotype. FUNDING: Wellcome Trust via an Edinburgh Clinical Academic Training PhD Fellowship.

19.
Brain ; 138(Pt 7): 1817-32, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25981959

ABSTRACT

Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies.


Subject(s)
Ataxia/genetics , Cerebral Palsy/genetics , Genetic Diseases, Inborn/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , Point Mutation , Shaw Potassium Channels/genetics , Spectrin/genetics , Base Sequence , Child , Child, Preschool , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Patch-Clamp Techniques , Sequence Analysis, DNA
20.
Ann Clin Transl Neurol ; 1(11): 867-83, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25540801

ABSTRACT

OBJECTIVE: Electromyography (EMG) is used routinely to diagnose neuromuscular dysfunction in a wide range of peripheral neuropathies, myopathies, and neuromuscular degenerative diseases including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Definitive neurological diagnosis may also be indicated by the analysis of pathological neuromuscular innervation in motor-point biopsies. Our objective in this study was to preempt motor-point biopsy by combining live imaging with electrophysiological analysis of slow degeneration of neuromuscular junctions (NMJs) in vivo. METHODS: We combined conventional needle electromyography with fiber-optic confocal endomicroscopy (CEM), using an integrated hand-held, 1.5-mm-diameter probe. We utilized as a test bed, various axotomized muscles in the hind limbs of anaesthetized, double-homozygous thy1.2YFP16: Wld (S) mice, which coexpress the Wallerian-degeneration Slow (Wld(S)) protein and yellow fluorescent protein (YFP) in motor neurons. We also tested exogenous vital stains, including Alexa488-α-bungarotoxin; the styryl pyridinium dye 4-Di-2-Asp; and a GFP conjugate of botulinum toxin Type A heavy chain (GFP-HcBoNT/A). RESULTS: We show that an integrated EMG/CEM probe is effective in longitudinal evaluation of functional and morphological changes that take place over a 7-day period during axotomy-induced, slow neuromuscular synaptic degeneration. EMG amplitude declined in parallel with overt degeneration of motor nerve terminals. EMG/CEM was safe and effective when nerve terminals and motor endplates were selectively stained with vital dyes. INTERPRETATION: Our findings constitute proof-of-concept, based on live imaging in an animal model, that combining EMG/CEM may be useful as a minimally invasive precursor or alternative to motor-point biopsy in neurological diagnosis and for monitoring local administration of potential therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...