Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(26): 28806-28815, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973868

ABSTRACT

The recent increase in legality of Cannabis Sativa L. has led to interest in developing new varieties with unique aromatic or effect-driven traits. Selectively breeding plants for the genetic stability and consistency of their secondary metabolite profiles is one application of phenotyping. While this horticultural process is used extensively in the cannabis industry, few studies exist examining the chemical data that may differentiate phenotypes aromatically. To gain insight into the diversity of secondary metabolite profiles between progeny, we analyzed five ice water hash rosin extracts created from five different phenotypes of the same crossing using comprehensive 2-dimensional gas chromatography coupled to time-of-flight mass spectrometry, flame ionization detection, and sulfur chemiluminescence detection. These results were then correlated to results from a human sensory panel, which revealed specific low-concentration compounds that strongly influence sensory perception. We found aroma differences between certain phenotypes that are driven by key minor, nonterpenoid compounds, including the newly reported 3-mercaptohexyl hexanoate. We further report the identification of octanoic and decanoic acids, which are implicated in the production of cheese-like aromas in cannabis. These results establish that even genetically similar phenotypes can possess diverse and distinct aromas arising not from the dominant terpenes, but rather from key minor volatile compounds. Moreover, our study underscores the value of detailed chemical analyses in enhancing cannabis selective breeding practices, offering insights into the chemical basis of aroma and sensory differences.

2.
ACS Omega ; 8(42): 39203-39216, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901519

ABSTRACT

Cannabis sativa L. produces a wide variety of volatile secondary metabolites that contribute to its unique aroma. The major volatile constituents include monoterpenes, sesquiterpenes, and their oxygenated derivates. In particular, the compounds ß-myrcene, D-(+)-limonene, ß-caryophyllene, and terpinolene are often found in greatest amounts, which has led to their use in chemotaxonomic classification schemes and legal Cannabis sativa L. product labeling. While these compounds contribute to the characteristic aroma of Cannabis sativa L. and may help differentiate varieties on a broad level, their importance in producing specific aromas is not well understood. Here, we show that across Cannabis sativa L. varieties with divergent aromas, terpene expression remains remarkably similar, indicating their benign contribution to these unique, specific scents. Instead, we found that many minor, nonterpenoid compounds correlate strongly with nonprototypical sweet or savory aromas produced by Cannabis sativa L. Coupling sensory studies to our chemical analysis, we derive correlations between groups of compounds, or in some cases, individual compounds, that produce many of these diverse scents. In particular, we identified a new class of volatile sulfur compounds (VSCs) containing the 3-mercaptohexyl functional group responsible for the distinct citrus aromas in certain varieties and skatole (3-methylindole) as the key source of the chemical aroma in others. Our results provide not only a rich understanding of the chemistry of Cannabis sativa L. but also highlight how the importance of terpenes in the context of the aroma of Cannabis sativa L. has been overemphasized.

SELECTION OF CITATIONS
SEARCH DETAIL
...