Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Tissue Bank ; 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37550401

ABSTRACT

Osteochondral allograft transplantation is a successfully proven method to repair articular cartilage defects and prevent the degenerative effects of osteoarthritis. The number of osteochondral transplantations that can be performed each year is limited by availability of donor cartilage tissue and storage time constraints. Osteochondral transplantation success has been linked to high chondrocyte viability of the donor cartilage tissue at the time of implantation. Determining optimal storage conditions for donor cartilage is essential for tissue banks to safely provide quality cartilage tissue. In this study, we compared three tissue/cell media (DMEM/F12, RPMI-1640 and X-VIVO 10) for their ability to maintain chondrocyte viability during hypothermic storage for 28 days. Porcine osteochondral dowels were stored in each media for 28 days and cell viability was assessed every 7 days. Over the 28 day storage period, the chondrocyte viability of dowels stored in DMEM/F12, RPMI-1640, and X-VIVO 10 media all declined in a similar fashion. Our results show that all three media were equivalent in their ability to maintain cell viability of the cartilage tissue and provides rationale for the use of lower cost cell media (DMEM/F12 and RPMI-1640) for hypothermic storage of articular cartilage tissue.

2.
Cartilage ; : 19476035221118656, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37148124

ABSTRACT

OBJECTIVE: Vitrification of articular cartilage (AC) is a promising technique which may enable long-term tissue banking of AC allografts. We previously developed a 2-step, dual-temperature, multi-cryoprotectant agent (CPA) loading protocol to cryopreserve particulated AC (1 mm3 cubes). Furthermore, we also determined that the inclusion of ascorbic acid (AA) effectively mitigates CPA toxicity in cryopreserved AC. Prior to clinical translation, chondrocytes must remain viable after tissue re-warming and before transplantation. However, the effects of short-term hypothermic storage of particulated AC after vitrification and re-warming are not documented. This study evaluated the chondrocyte viability of post-vitrified particulated AC during a 7-day tissue storage period at 4 °C. We hypothesized that porcine particulated AC could be stored for up to 7 days after successful vitrification without significant loss of cell viability, and these results would be enhanced when cartilage is incubated in storage medium supplemented with clinical grade AA. DESIGN: Three experimental groups were examined at 5 time points: a fresh control (only incubated in medium), a vitrified - AA group, and a vitrified + AA group (N = 7). RESULTS: There was a mild decline in cell viability but both treatment groups maintained a viability of greater than 80% viable cells which is acceptable for clinical translation. CONCLUSION: We determined that particulated AC can be stored for up to 7 days after successful vitrification without a clinically significant decline in chondrocyte viability. This information can be used to guide tissue banks regarding the implementation of AC vitrification to increase cartilage allograft availability.

3.
Am J Sports Med ; 50(13): 3671-3680, 2022 11.
Article in English | MEDLINE | ID: mdl-36259633

ABSTRACT

BACKGROUND: The use of particulated articular cartilage for repairing cartilage defects has been well established, but its use is currently limited by the availability and short shelf life of donor cartilage. Vitrification is an ice-free cryopreservation technology at ultralow temperatures for tissue banking. An optimized vitrification protocol has been developed for particulated articular cartilage; however, the equivalency of the long-term clinical efficacy of vitrified particulated articular cartilage compared with fresh articular cartilage has not yet been determined. HYPOTHESIS: The repair effect of vitrified particulated cartilage from pigs would be equivalent to or better than that of fresh particulated cartilage stored at 4°C for 21 days. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 19 pigs were randomly divided into 3 experimental groups: fresh particulated cartilage group (n = 8), vitrified particulated cartilage group (n = 8), and negative control group (no particulated cartilage in the defect; n = 3). An additional pig was used as the initial cartilage donor for the first set of surgical procedures. Pigs were euthanized after 6 months to obtain femoral condyles, and the contralateral condyle was used as the positive (no defect) control. Samples were evaluated for gross morphology using the Outerbridge and Osteoarthritis Research Society International (OARSI) scoring systems, histology (safranin O, collagen type I/II, DAPI), and chondrocyte viability using live-dead membrane integrity staining. RESULTS: There were no infections after surgery, and all 19 pigs were followed for the duration of the study. The OARSI grades for the fresh and vitrified particulated cartilage groups were 2.44 ± 1.35 and 2.00 ± 0.80, respectively, while the negative control group was graded significantly higher at 4.83 ± 0.29. Analysis of histological and fluorescent staining demonstrated that the fresh and vitrified particulated cartilage groups had equivalent regeneration within cartilage defects, with similar cell viability and densities and expression of proteoglycans and collagen type I/II. CONCLUSION: The implantation of fresh or vitrified particulated cartilage resulted in the equivalent repair of focal cartilage defects when evaluated at 6 months after surgery. CLINICAL RELEVANCE: The vitrification of particulated cartilage is a viable option for long-term storage for cartilage tissue banking and could greatly increase the availability of donor tissue for transplantation.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Animals , Cartilage Diseases/surgery , Cartilage, Articular/surgery , Chondrocytes , Collagen Type I , Collagen Type II , Knee Joint/surgery , Swine
4.
Virology ; 516: 147-157, 2018 03.
Article in English | MEDLINE | ID: mdl-29358114

ABSTRACT

Flaviviruses depend on multiple host pathways during their life cycles and have evolved strategies to avoid the innate immune response. Previously, we showed that the West Nile virus capsid protein plays a role in this process by blocking apoptosis. In this study, we examined how expression of capsid proteins from several flaviviruses affects apoptosis and other host processes that impact virus replication. All of the tested capsid proteins protected cells from Fas-dependent apoptosis through a mechanism that requires activated Akt. Capsid expression upregulated other Akt-dependent cellular processes including expression of glucose transporter 1 and mitochondrial metabolism. Protein phosphatase 1, which is known to inactivate Akt, was identified as a DENV capsid interacting protein. This suggests that DENV capsid expression activates Akt by sequestering phosphatases that downregulate phospho-Akt. Capsid-dependent upregulation of Akt would enhance downstream signalling pathways that affect cell survival and metabolism, thus providing a favourable environment for virus replication.


Subject(s)
Capsid Proteins/metabolism , Flavivirus Infections/enzymology , Flavivirus Infections/virology , Flavivirus/physiology , Proto-Oncogene Proteins c-akt/metabolism , Virus Replication , Apoptosis , Capsid/metabolism , Capsid Proteins/genetics , Dengue Virus/genetics , Dengue Virus/physiology , Flavivirus/classification , Flavivirus/genetics , Flavivirus/metabolism , Flavivirus Infections/genetics , Flavivirus Infections/physiopathology , Humans , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction
5.
J Biol Chem ; 289(15): 10876-10886, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24558042

ABSTRACT

Lipin-1 is a phosphatidate phosphatase in glycerolipid biosynthesis and signal transduction. It also serves as a transcriptional co-regulator to control lipid metabolism and adipogenesis. These functions are controlled partly by its subcellular distribution. Hyperphosphorylated lipin-1 remains sequestered in the cytosol, whereas hypophosphorylated lipin-1 translocates to the endoplasmic reticulum and nucleus. The serine/threonine protein phosphatase-1 catalytic subunit (PP-1c) is a major protein dephosphorylation enzyme. Its activity is controlled by interactions with different regulatory proteins, many of which contain conserved RVXF binding motifs. We found that lipin-1 binds to PP-1cγ through a similar HVRF binding motif. This interaction depends on Mg(2+) or Mn(2+) and is competitively inhibited by (R/H)VXF-containing peptides. Mutating the HVRF motif in the highly conserved N terminus of lipin-1 greatly decreases PP-1cγ interaction. Moreover, mutations of other residues in the N terminus of lipin-1 also modulate PP-1cγ binding. PP-1cγ binds poorly to a phosphomimetic mutant of lipin-1 and binds well to the non-phosphorylatable lipin-1 mutant. This indicates that lipin-1 is dephosphorylated before PP-1cγ binds to its HVRF motif. Importantly, mutating the HVRF motif also abrogates the nuclear translocation and phosphatidate phosphatase activity of lipin-1. In conclusion, we provide novel evidence of the importance of the lipin-1 N-terminal domain for its catalytic activity, nuclear localization, and binding to PP-1cγ.


Subject(s)
Active Transport, Cell Nucleus , Lipid Metabolism , Phosphatidate Phosphatase/metabolism , Protein Phosphatase 1/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Conserved Sequence , Gene Expression Regulation , Genetic Vectors , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
6.
Biochem J ; 449(3): 649-59, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23088536

ABSTRACT

The serine/threonine PP-1c (protein phosphatase-1 catalytic subunit) is regulated by association with multiple regulatory subunits. Human ASPPs (apoptosis-stimulating proteins of p53) comprise three family members: ASPP1, ASPP2 and iASPP (inhibitory ASPP), which is uniquely overexpressed in many cancers. While ASPP2 and iASPP are known to bind PP-1c, we now identify novel and distinct molecular interactions that allow all three ASPPs to bind differentially to PP-1c isoforms and p53. iASPP lacks a PP-1c-binding RVXF motif; however, we show it interacts with PP-1c via a RARL sequence with a Kd value of 26 nM. Molecular modelling and mutagenesis of PP-1c-ASPP protein complexes identified two additional modes of interaction. First, two positively charged residues, Lys260 and Arg261 on PP-1c, interact with all ASPP family members. Secondly, the C-terminus of the PP-1c α, ß and γ isoforms contain a type-2 SH3 (Src homology 3) poly-proline motif (PxxPxR), which binds directly to the SH3 domains of ASPP1, ASPP2 and iASPP. In PP-1cγ this comprises residues 309-314 (PVTPPR). When the Px(T)PxR motif is deleted or mutated via insertion of a phosphorylation site mimic (T311D), PP-1c fails to bind to all three ASPP proteins. Overall, we provide the first direct evidence for PP-1c binding via its C-terminus to an SH3 protein domain.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Protein Phosphatase 1/chemistry , Protein Phosphatase 1/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins/genetics , Humans , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutagenesis, Site-Directed , Neoplasms/genetics , Neoplasms/metabolism , Protein Interaction Domains and Motifs , Protein Phosphatase 1/genetics , Rabbits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Surface Plasmon Resonance , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...