Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 141: 107347, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781796

ABSTRACT

The unconfined compressive strength (UCS) of intact rocks is crucial for engineering applications, but traditional laboratory testing is often impractical, especially for historic buildings lacking sufficient core samples. Non-destructive tests like the Schmidt hammer rebound number and compressional wave velocity offer solutions, but correlating these with UCS requires complex mathematical models. This paper introduces a novel approach using an artificial neural network (ANN) to simultaneously correlate UCS with three non-destructive test indexes: Schmidt hammer rebound number, compressional wave velocity, and open-effective porosity. The proposed ANN model outperforms existing methods, providing accurate UCS predictions for various rock types. Contour maps generated from the model offer practical tools for geotechnical and geological engineers, facilitating decision-making in the field and enhancing educational resources. This integrated approach promises to streamline UCS estimation, improving efficiency and accuracy in engineering assessments of intact rock materials.

2.
J Cell Mol Med ; 28(4): e18105, 2024 02.
Article in English | MEDLINE | ID: mdl-38339761

ABSTRACT

Complement inhibition has shown promise in various disorders, including COVID-19. A prediction tool including complement genetic variants is vital. This study aims to identify crucial complement-related variants and determine an optimal pattern for accurate disease outcome prediction. Genetic data from 204 COVID-19 patients hospitalized between April 2020 and April 2021 at three referral centres were analysed using an artificial intelligence-based algorithm to predict disease outcome (ICU vs. non-ICU admission). A recently introduced alpha-index identified the 30 most predictive genetic variants. DERGA algorithm, which employs multiple classification algorithms, determined the optimal pattern of these key variants, resulting in 97% accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 variants per patient, with 977 total variants detected. This study demonstrates the utility of alpha-index in ranking a substantial number of genetic variants. This approach enables the implementation of well-established classification algorithms that effectively determine the relevance of genetic variants in predicting outcomes with high accuracy.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/genetics , Artificial Intelligence , Algorithms
3.
J Cell Mol Med ; 26(5): 1445-1455, 2022 03.
Article in English | MEDLINE | ID: mdl-35064759

ABSTRACT

There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.


Subject(s)
COVID-19/genetics , COVID-19/mortality , Neural Networks, Computer , COVID-19/epidemiology , Complement Activation/genetics , Complement Factor H/genetics , Complement System Proteins/genetics , Female , Greece/epidemiology , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Models, Genetic , Morbidity , Polymorphism, Single Nucleotide , Thrombomodulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...