Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 346(6212): 996-1000, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25414313

ABSTRACT

We introduce the antibody landscape, a method for the quantitative analysis of antibody-mediated immunity to antigenically variable pathogens, achieved by accounting for antigenic variation among pathogen strains. We generated antibody landscapes to study immune profiles covering 43 years of influenza A/H3N2 virus evolution for 69 individuals monitored for infection over 6 years and for 225 individuals pre- and postvaccination. Upon infection and vaccination, titers increased broadly, including previously encountered viruses far beyond the extent of cross-reactivity observed after a primary infection. We explored implications for vaccination and found that the use of an antigenically advanced virus had the dual benefit of inducing antibodies against both advanced and previous antigenic clusters. These results indicate that preemptive vaccine updates may improve influenza vaccine efficacy in previously exposed individuals.


Subject(s)
Antibodies, Viral/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Vaccination , Antibodies, Viral/blood , Antigenic Variation/genetics , Antigenic Variation/immunology , Evolution, Molecular , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/blood , Influenza, Human/prevention & control
2.
J Virol ; 85(23): 12742-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21937642

ABSTRACT

Equine influenza virus is a major respiratory pathogen in horses, and outbreaks of disease often lead to substantial disruption to and economic losses for equestrian industries. The hemagglutinin (HA) protein is of key importance in the control of equine influenza because HA is the primary target of the protective immune response and the main component of currently licensed influenza vaccines. However, the influenza virus HA protein changes over time, a process called antigenic drift, and vaccine strains must be updated to remain effective. Antigenic drift is assessed primarily by the hemagglutination inhibition (HI) assay. We have generated HI assay data for equine influenza A (H3N8) viruses isolated between 1968 and 2007 and have used antigenic cartography to quantify antigenic differences among the isolates. The antigenic evolution of equine influenza viruses during this period was clustered: from 1968 to 1988, all isolates formed a single antigenic cluster, which then split into two cocirculating clusters in 1989, and then a third cocirculating cluster appeared in 2003. Viruses from all three clusters were isolated in 2007. In one of the three clusters, we show evidence of antigenic drift away from the vaccine strain over time. We determined that a single amino acid substitution was likely responsible for the antigenic differences among clusters.


Subject(s)
Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H3N8 Subtype/genetics , Influenza A Virus, H3N8 Subtype/immunology , Orthomyxoviridae Infections/virology , Amino Acid Substitution , Animals , Antigens, Viral/classification , Antigens, Viral/immunology , Blotting, Western , Cells, Cultured , Dogs , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins/immunology , Hemagglutinins/metabolism , Horses , Influenza A Virus, H3N8 Subtype/isolation & purification , Kidney/cytology , Kidney/metabolism , Kidney/virology , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Phylogeny , RNA, Messenger/genetics , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...