Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 259(1): 1-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25864713

ABSTRACT

The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 µm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude.

2.
Adv Mater ; 23(44): 5130-47, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-21971955

ABSTRACT

A bottom-up, multiscale modeling approach is presented to carry out high-fidelity virtual mechanical tests of composite materials and structures. The strategy begins with the in situ measurement of the matrix and interface mechanical properties at the nanometer-micrometer range to build up a ladder of the numerical simulations, which take into account the relevant deformation and failure mechanisms at different length scales relevant to individual plies, laminates and components. The main features of each simulation step and the information transferred between length scales are described in detail as well as the current limitations and the areas for further development. Finally, the roadmap for the extension of the current strategy to include functional properties and processing into the simulation scheme is delineated.


Subject(s)
Materials Testing/methods , Mechanical Phenomena , Models, Theoretical , User-Computer Interface , Microtechnology , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...