Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 184(19): 5402-9, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12218027

ABSTRACT

Muconate cycloisomerases are known to catalyze the reversible conversion of 2-chloro-cis,cis-muconate by 1,4- and 3,6-cycloisomerization into (4S)-(+)-2-chloro- and (4R/5S)-(+)-5-chloromuconolactone. 2-Chloromuconolactone is transformed by muconolactone isomerase with concomitant dechlorination and decarboxylation into the antibiotic protoanemonin. The low k(cat) for this compound compared to that for 5-chloromuconolactone suggests that protoanemonin formation is of minor importance. However, since 2-chloromuconolactone is the initially predominant product of 2-chloromuconate cycloisomerization, significant amounts of protoanemonin were formed in reaction mixtures containing large amounts of muconolactone isomerase and small amounts of muconate cycloisomerase. Such enzyme ratios resemble those observed in cell extracts of benzoate-grown cells of Ralstonia eutropha JMP134. In contrast, cis-dienelactone was the predominant product formed by enzyme preparations, in which muconolactone isomerase was in vitro rate limiting. In reaction mixtures containing chloromuconate cycloisomerase and muconolactone isomerase, only minute amounts of protoanemonin were detected, indicating that only small amounts of 2-chloromuconolactone were formed by cycloisomerization and that chloromuconate cycloisomerase actually preferentially catalyzes a 3,6-cycloisomerization.


Subject(s)
4-Butyrolactone/analogs & derivatives , Adipates/metabolism , Bacterial Proteins , Carbon-Carbon Double Bond Isomerases/metabolism , Cupriavidus necator/enzymology , Furans/metabolism , Intramolecular Lyases/metabolism , Sorbic Acid/analogs & derivatives , Sorbic Acid/metabolism , 4-Butyrolactone/metabolism , Catalysis , Chromatography, High Pressure Liquid , Cupriavidus necator/growth & development , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...