Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 22(7)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-33286482

ABSTRACT

Experiments on the dissociation of a mixed gas hydrate in various combustion methods are performed. The simultaneous influence of two determining parameters (the powder layer thickness and the external air velocity) on the efficiency of dissociation is studied. It has been shown that for the mixed hydrate, the dissociation rate under induction heating is 10-15 times higher than during the burning of a thick layer of powder, when the combustion is realized above the layer surface. The minimum temperature required for the initiation of combustion for different combustion methods was studied. As the height of the sample layer increases, the rate of dissociation decreases. The emissions of NOx and CO for the composite hydrate are higher than for methane hydrate at the same temperature in a muffle furnace. A comparison of harmful emissions during the combustion of gas hydrates with various types of coal fuels is presented. NOx concentration as a result of the combustion of gas hydrates is tens of times lower than when burning coal fuels. Increasing the temperature in the muffle furnace reduces the concentration of combustion products of gas hydrates.

2.
J Phys Chem B ; 113(17): 5760-8, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-19344169

ABSTRACT

The structure of clathrate hydrates with tetraisoamylammonium polyacrylate salt incorporated as guest has been studied in this work. Also, quantitative studies on the stability changes of the clathrate hydrates with different degrees of cross-linking of the guest polymer (varied from 0 to 3%) have been conducted. A single crystal X-ray diffraction study of a crystal of the hydrate with linear (uncross-linked) tetraisoamylammonium polyacrylate as guest reveals a hexagonal structure (space group P6m2, a = 12.15 A, c =12.58 A at 100 K) with 39 host framework water molecules per one guest monomeric unit. Powder X-ray diffraction analyses confirm the identity of the above crystal structure of the hydrate with linear guest polymer and the crystal structure of the hydrates with cross-linked guest (hexagonal, a = 12.25 A, c =12.72 A at 276 K). In order to quantitatively determine the stability differences of the hydrates with the included guests having various degrees of cross-linking of the anionic chain, a series of differential scanning calorimetry measurements of the fusion enthalpy of the hydrate samples has been carried out. On the basis of the results obtained, a structural model describing the decrease in the stability of the clathrate hydrates with tetraisoamylammonium polyacrylate guest as a function of the degree of cross-linking of the guest polymer has been suggested.


Subject(s)
Acrylic Resins/chemistry , Quaternary Ammonium Compounds/chemistry , Calorimetry , Powder Diffraction , Temperature , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...