Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 106(10): 7295-7309, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37210354

ABSTRACT

The dairy industry depends upon the cow's successful lactation for economic profitability. Heat stress compromises the economic sustainability of the dairy industry by reducing milk production and increasing the risk of metabolic and pathogenic disease. Heat stress alters metabolic adaptations, such as nutrient mobilization and partitioning, that support the energetic demands of lactation. Metabolically inflexible cows are unable to enlist the necessary homeorhetic shifts that provide the needed nutrients and energy for milk synthesis, thereby impairing lactation performance. Mitochondria provide the energetic foundation that enable a myriad of metabolically demanding processes, such as lactation. Changes in an animal's energy requirements are met at the cellular level through alterations in mitochondrial density and bioenergetic capacity. Mitochondria also act as central stress modulators and coordinate tissues' energetic responses to stress by integrating endocrine signals, through mito-nuclear communication, into the cellular stress response. In vitro heat insults affect mitochondria through a compromise in mitochondrial integrity, which is linked to a decrease in mitochondrial function. However, limited evidence exists linking the in vivo metabolic effects of heat stress with parameters of mitochondrial behavior and function in lactating animals. This review summarizes the literature describing the cellular and subcellular effects of heat stress, with a focus on the effect of heat stress on mitochondrial bioenergetics and cellular dysfunction in livestock. Implications for lactation performance and metabolic health are also discussed.


Subject(s)
Lactation , Mitochondria , Female , Cattle , Animals , Lactation/physiology , Mitochondria/metabolism , Milk/metabolism , Energy Metabolism/physiology , Heat-Shock Response
2.
Domest Anim Endocrinol ; 78: 106681, 2022 01.
Article in English | MEDLINE | ID: mdl-34600221

ABSTRACT

Exposure to stressors during early developmental windows, such as prenatally (i.e., in utero), can have life-long implications for an animal's health and productivity. The mammary gland starts developing in utero and, like other developing tissues and organs, may undergo fetal programming. Previous research has implicated factors, such as prenatal exposure to endocrine disruptors or alterations in maternal diet (e.g., maternal over or undernutrition), that can influence the developmental trajectory of the offspring mammary gland in postnatal life. However, the direct links between prenatal insults and future productive outcomes are less documented in livestock species. Research on in utero hyperthermia effects on early-life mammary development is scarce. This review will provide an overview of key developmental milestones taking place in the bovine mammary gland during the pre- and postnatal stages. We will showcase how intrauterine hyperthermia, experienced by the developing fetus during the last trimester of gestation, derails postnatal mammary gland development and impairs its synthetic capacity later in life. We will provide insights into the underlying histological, cellular, and molecular mechanisms taking place at key postnatal developmental life stages, including birth, weaning and the first lactation, that might explain permanent detriments in productivity long after the initial exposure to hyperthermia. Collectively, our studies indicate that prenatal hyperthermia jeopardizes the normal developmental trajectory of the mammary gland from fetal development to lactation. Further, in utero hyperthermia epigenetically programs the udder, and possibly other organs critical to lactation, yielding a less resilient and less productive cow for multiple lactations.


Subject(s)
Hyperthermia, Induced , Milk , Animals , Cattle , Epigenesis, Genetic , Female , Hyperthermia, Induced/veterinary , Lactation , Mammary Glands, Animal , Nuclear Family , Parturition , Pregnancy
3.
J Dairy Sci ; 104(9): 10415-10425, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34218917

ABSTRACT

As milk production in dairy cattle continues to increase, so do the energetic and nutrient demands on the dairy cow. Difficulties making the necessary metabolic adjustments for lactation can impair lactation performance and increase the risk of metabolic disorders. The physiological adaptations to lactation involve the mammary gland and extramammary tissues that coordinately enhance the availability of precursors for milk synthesis. Changes in whole-body metabolism and nutrient partitioning are accomplished, in part, through the bioenergetic and biosynthetic capacity of the mitochondria, providing energy and diverting important substrates, such as AA and fatty acids, to the mammary gland in support of lactation. With increased oxidative capacity and ATP production, reactive oxygen species production in mitochondria may be altered. Imbalances between oxidant production and antioxidant activity can lead to oxidative damage to cellular structures and contribute to disease. Thus, mitochondria are tasked with meeting the energy needs of the cell and minimizing oxidative stress. Mitochondrial function is regulated in concert with cellular metabolism by the nucleus. With only a small number of genes present within the mitochondrial genome, many genes regulating mitochondrial function are housed in nuclear DNA. This review describes the involvement of mitochondria in coordinating tissue-specific metabolic adaptations across lactation in dairy cattle and the current state of knowledge regarding mitochondrial-nuclear signaling pathways that regulate mitochondrial proliferation and function in response to shifting cellular energy need.


Subject(s)
Lactation , Mitochondria , Adaptation, Physiological , Animals , Cattle , Female , Humans , Mammary Glands, Animal/metabolism , Milk/metabolism , Students
4.
Domest Anim Endocrinol ; 74: 106519, 2021 01.
Article in English | MEDLINE | ID: mdl-32739765

ABSTRACT

Peripheral serotonin regulates energy metabolism in several mammalian species, however, the potential contribution of serotonergic mechanisms as metabolic and endocrine regulators in growing dairy calves remain unexplored. Objectives were to characterize the role of serotonin in glucose and insulin metabolism in dairy calves with increased serotonin bioavailability. Milk replacer was supplemented with saline, 5-hydroxytryptophan (90 mg/d), or fluoxetine (40 mg/d) for 10-d (n = 8/treatment). Blood was collected daily during supplementation and on days 2, 7, and 14 during withdrawal. Calves were euthanized after 10-d supplementation or 14-d withdrawal periods to harvest liver and pancreas tissue. 5-hydroxytryptophan increased circulating insulin concentrations during the supplementation period, whereas both treatments increased circulating glucose concentration during the withdrawal period. The liver and pancreas of preweaned calves express serotonin factors (ie, TPH1, SERT, and cell surface receptors), indicating their ability to synthesize, uptake, and respond to serotonin. Supplementation of 5-hydroxytryptophan increased hepatic and pancreatic serotonin concentrations. After the withdrawal period, fluoxetine cleared from the pancreas but not liver tissue. Supplementation of 5-hydroxytryptophan upregulated hepatic mRNA expression of serotonin receptors (ie, 5-HTR1B, -1D, -2A, and -2B), and downregulated pancreatic 5-HTR1F mRNA and insulin-related proteins (ie, Akt and pAkt). Fluoxetine-supplemented calves had fewer pancreatic islets per microscopic field with reduced insulin intensity, whereas 5-hydroxytryptophan supplemented calves had increased islet number and area with greater insulin and serotonin and less glucagon intensities. After the 14-d withdrawal of 5-hydroxytryptophan, hepatic mRNA expression of glycolytic and gluconeogenic enzymes were simultaneously downregulated. Improving serotonin bioavailability could serve as a potent regulator of endocrine and metabolic processes in dairy calves.


Subject(s)
Cattle/metabolism , Serotonin/physiology , 5-Hydroxytryptophan/administration & dosage , Animals , Blood Glucose/analysis , Fluoxetine/administration & dosage , Fluoxetine/blood , Gene Expression Regulation/drug effects , Glucagon/analysis , Insulin/analysis , Insulin/blood , Liver/chemistry , Liver/drug effects , Liver/metabolism , Male , Pancreas/chemistry , Pancreas/drug effects , Pancreas/metabolism , Serotonin/analysis , Serotonin/blood
5.
Sci Rep ; 10(1): 9712, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546841

ABSTRACT

Dairy calves are born with a naïve immune system, making the pre-weaning phase a critical window for immune development. In the U.S., 40-60% of dairy farms feed milk replacer to pre-weaned calves, which are devoid of bioactive factors with immunological roles. Serotonin is a bioactive factor with immunoregulatory properties naturally produced by the calf and present in milk. Human and rodent immune cells express the serotonin machinery, but little is known about the role of serotonin in the bovine immune system. Supplementing milk replacer with 5-hydroxytryptophan (serotonin precursor) or fluoxetine (reuptake inhibitor) increases serotonin bioavailability. We hypothesized that increased serotonin bioavailability promotes serotonergic signaling and modulates the expression of immune related genes in peripheral leukocytes and immune-related tissues of dairy calves. The present experiment targeted candidate genes involved in serotonin production, metabolism, transport, signaling and immune regulation. We established that bovine peripheral leukocytes express all known serotonin receptors, and can synthesize, uptake and degrade serotonin due to the expression of serotonin metabolism-related genes. Indeed, we showed that increasing serotonin bioavailability alters gene expression of serotonin receptors and immune-related genes. Further research will determine whether manipulation of the serotonin pathway could be a feasible approach to bolster dairy calves' immune system.


Subject(s)
5-Hydroxytryptophan/pharmacology , Serotonin/immunology , Serotonin/metabolism , Animal Feed/analysis , Animals , Biological Availability , Cattle/immunology , Diet/veterinary , Dietary Supplements , Female , Fluoxetine/pharmacology , Gene Expression/drug effects , Gene Expression Regulation/drug effects , Leukocytes/metabolism , Lymphoid Tissue/metabolism , Milk , Serotonin/physiology , Weaning
6.
Domest Anim Endocrinol ; 69: 42-50, 2019 10.
Article in English | MEDLINE | ID: mdl-31280025

ABSTRACT

Peripheral serotonin has been shown to regulate important physiological functions such as energy homeostasis and immunity, particularly in rodent and humans, but its role is poorly understood in livestock species. Herein, we tested the safety and effectiveness of increasing serotonin bioavailability in preweaned dairy calves by oral supplementation of a serotonin precursor (5-hydroxytryptophan, 5-HTP) or a serotonin reuptake inhibitor (fluoxetine, FLX). Bull Holstein calves (21 ± 2 d old; N = 24) were fed milk replacer (8 L/d) supplemented with either saline as control (CON, 8 mL/d, n = 8), FLX (40 mg/d, approx. 0.8 mg/kg; n = 8), or 5-HTP (90 mg/d, approx. 1.8 mg/kg; n = 8) for 10 consecutive days in a complete randomized block design. Heart rate (HR), respiration rate, rectal temperature, and health scores were recorded daily. Hip height and body weight were measured at d 1, 5, and 10 relative to initiation of supplementation. Blood samples were collected once before the supplementation period (d 1), during the 10-d supplementation period (daily), and during a 14-d withdrawal period (d 2, 3, 4, 7, and 14 relative to initiation of withdrawal). Cerebrospinal fluid and muscle tissue were collected from a subset of calves (n = 12) that were euthanized after the 10-d supplementation or 14-d withdrawal period. Whole blood serotonin concentrations increased in 5-HTP calves and decreased in FLX calves compared with CON (P < 0.001), indicating that serotonin bioavailability was increased in both groups. Whole blood serotonin concentrations of 5-HTP and FLX calves returned to CON levels after 7 d of withdrawal. All calves grew and were considered healthy throughout the study. In fact, calves fed 5-HTP had higher average daily gain compared with CON (0.87 vs 0.66 ± 0.12 kg/d, P = 0.05). Calves fed FLX had lower HR (P = 0.02) and greater red blood cells and hemoglobin counts on d 10 of supplementation compared with CON (P < 0.01). After the 14-d withdrawal period, FLX was not detected in circulation of FLX calves, but was still present in the muscle tissue. Our results demonstrate that manipulation of the serotonin pathway by supplementing FLX or 5-HTP is a feasible and safe approach in preweaned dairy calves; however, it takes more than 14 d for FLX to be completely withdrawn from the body.


Subject(s)
Behavior, Animal/physiology , Cattle/growth & development , Fluoxetine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin/pharmacology , Animals , Cattle/blood , Cattle/physiology , Dietary Supplements , Feces/chemistry , Fluoxetine/blood , Fluoxetine/cerebrospinal fluid , Fluoxetine/pharmacokinetics , Serotonin/blood , Serotonin/pharmacokinetics , Tissue Distribution
7.
Sci Rep ; 8(1): 14609, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279561

ABSTRACT

Exposure to intrauterine heat stress during late gestation affects offspring performance into adulthood. However, underlying mechanistic links between thermal insult in fetal life and postnatal outcomes are not completely understood. We examined morphology, DNA methylation, and gene expression of liver and mammary gland for bull calves and heifers that were gestated under maternal conditions of heat stress or cooling (i.e. in utero heat stressed vs. in utero cooled calves). Mammary tissue was harvested from dairy heifers during their first lactation and liver from bull calves at birth. The liver of in utero heat stressed bull calves contained more cells and the mammary glands of in utero heat stressed heifers were comprised of smaller alveoli. We identified more than 1,500 CpG sites differently methylated between maternal treatment groups. These CpGs were associated with approximately 400 genes, which play a role in processes, such as development, innate immune defense, cell signaling, and transcription and translation. We also identified over 100 differentially expressed genes in the mammary gland with similar functions. Interestingly, fifty differentially methylated genes were shared by both bull calf liver and heifer mammary gland. Intrauterine heat stress alters the methylation profile of liver and mammary DNA and programs their morphology in postnatal life, which may contribute to the poorer performance of in utero heat stressed calves.


Subject(s)
Epigenesis, Genetic , Genome , Mitogen-Activated Protein Kinases/genetics , Prenatal Exposure Delayed Effects/genetics , Transcription Factors/genetics , Animals , Animals, Newborn , Calcium Signaling/genetics , Cattle , CpG Islands , DNA Methylation , Epigenomics , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gestational Age , Heat-Shock Response , Liver/growth & development , Liver/metabolism , Male , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mitogen-Activated Protein Kinases/classification , Mitogen-Activated Protein Kinases/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Transcription Factors/classification , Transcription Factors/metabolism , Uterus/metabolism
8.
J Dairy Sci ; 100(4): 2976-2984, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28131582

ABSTRACT

Exposure to heat stress during late gestation exerts negative carryover effects on the postnatal performance of the calf. In this study, we evaluated the health, growth, and activity patterns of calves born to cows exposed to heat stress (HT, provided only shade, n = 31) or cooling (CL, fans, soakers, and shade, n = 29) during late gestation (∼46 d, maternal dry period). Calves' body weight, rectal temperature, suckling reflex, and movement scores were recorded at birth, and calves were fed 6.6 L of maternal colostrum in 2 meals. Blood samples were collected at birth (before feeding), 24 h after birth, and at d 10 and 28 of age. Calves were housed in individual pens, fed pasteurized milk (6 L/d), and had ad libitum access to grain and water until weaning (49 d). Activity was assessed during the first week of life (wk 1), at weaning (wk 7), and in the first week postweaning (wk 8) using electronic data loggers. Health and body weight were monitored weekly. At birth, calves born to CL cows were heavier (41.9 vs. 39.1 ± 0.8 kg), their temperature was lower (38.9 vs. 39.3 ± 0.08°C), and they were more efficient at absorbing IgG than HT calves. Suckling reflex and movement score at birth were not different between groups, but calves born to CL cows spent more time (50 min/d) standing in the first week of life as a result of longer standing bouts. In wk 7 and 8, calves born to CL cows had less frequent standing bouts than HT heifers, but CL heifers maintained greater total daily standing time (36 min/d) due to longer (7 min/bout) standing bouts. All calves were healthy, but HT heifers tended to have higher (looser) fecal scores on d 10. Heifers born from CL cows gained 0.2 kg/d more from birth to weaning, weighed 4 kg more at weaning, and had greater concentrations of IGF-1 than HT calves, particularly on d 28. In utero heat stress during late gestation had immediate and prolonged effects on passive immunity, growth, and activity patterns in dairy calves.


Subject(s)
Heat Stress Disorders/veterinary , Hot Temperature , Animals , Cattle , Colostrum/immunology , Female , Pregnancy , Pregnancy Complications/veterinary , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...