Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Mater Struct ; 55(10): 243, 2022.
Article in English | MEDLINE | ID: mdl-36447990

ABSTRACT

Production of blended cements in which Portland cement is combined with supplementary cementitious materials (SCM) is an effective strategy for reducing the CO2 emissions during cement manufacturing and achieving sustainable concrete production. However, the high Al2O3 and SiO2 contents of SCM change the chemical composition of the main hydration product, calcium aluminate silicate hydrate (C-A-S-H). Herein, spectroscopic and structural data for C-A-S-H gels are reported in a large range of equilibration times from 3 months up to 2 years and Al/Si molar ratios from 0.001 to 0.2. The 27Al MAS NMR spectroscopy and thermogravimetric analysis indicate that in addition to the C-A-S-H phase, secondary phases such as strätlingite, katoite, Al(OH)3 and calcium aluminate hydrate are present at Al/Si ≥ 0.03 limiting the uptake of Al in C-A-S-H. More secondary phases are present at higher Al concentrations; their content decreases with equilibration time while more Al is taken up in the C-A-S-H phase. At low Al contents, Al concentrations decrease strongly with time indicating a slow equilibration, in contrast to high Al contents where a clear change in Al concentrations over time was not observed indicating that the equilibrium has been reached faster. The 27Al NMR studies show that tetrahedrally coordinated Al is incorporated in C-A-S-H and its amount increases with the amount of Al present in the solution. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-022-02080-x.

2.
Angew Chem Int Ed Engl ; 61(32): e202203484, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35662368

ABSTRACT

Fast Li-ion conductivity at room temperature is a major challenge for utilization of all-solid-state Li batteries. Metal borohydrides with neutral ligands are a new emerging class of solid-state ionic conductors, and here we report the discovery of a new mono-methylamine lithium borohydride with very fast Li+ conductivity at room temperature. LiBH4 ⋅CH3 NH2 crystallizes in the monoclinic space group P21 /c, forming a two-dimensional unique layered structure. The layers are separated by hydrophobic -CH3 moieties, and contain large voids, allowing for fast Li-ionic conduction in the interlayers, σ(Li+ )=1.24×10-3  S cm-1 at room temperature. The electronic conductivity is negligible, and the electrochemical stability is ≈2.1 V vs Li. The first all-solid-state battery using a lithium borohydride with a neutral ligand as the electrolyte, Li-metal as the anode and TiS2 as the cathode is demonstrated.

3.
J Phys Chem Lett ; 13(9): 2211-2216, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35234479

ABSTRACT

Design of new functional materials with fast Mg-ion mobility is crucial for the development of competitive solid-state magnesium batteries. Herein, we present new nanocomposites, Mg(BH4)2·1.6NH3-Al2O3, reaching a high magnesium conductivity of σ(Mg2+) = 2.5 × 10-5 S cm-1 at 22 °C assigned to favorable interfaces between amorphous state Mg(BH4)2·1.6NH3; inert and insulating Al2O3 nanoparticles; and a minor fraction of crystalline material, mainly Mg(BH4)2·2NH3. Furthermore, quasi-elastic neutron scattering reveals that the Mg2+-ion mobility in the solid state appears to be correlated to relatively slow motion of NH3 molecules rather than the fast dynamics of BH4- complexes. The nanocomposite is compatible with a metallic Mg anode and shows stable Mg2+ stripping/plating in a symmetric cell and an electrochemical stability of ∼1.2 V. The nanocomposite has high mechanical stability and ductility and is a promising Mg2+ electrolyte for future solid-state magnesium batteries.

4.
Materials (Basel) ; 15(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35329749

ABSTRACT

Tricalcium aluminate (Ca3Al2O6: C3A) is the most reactive clinker phase in Portland cement. In this study, the effect of the sequence of mixing of C3A with gypsum and water on the hydration kinetics and phase assemblage is investigated. Three mixing sequences were employed: (i) Turbula mixing of C3A first with gypsum and then with water (T-mix); (ii) Hand mixing of C3A with gypsum before mixing with water (H-mix); (iii) Pre-mixing gypsum with water and then with C3A (P-mix). The results suggest that there is a considerable difference in the hydration kinetics and hydrate phase assemblage, particularly during the initial stages of hydration. P-mix promotes a higher degree of hydration in the initial minutes and considerably influences the main peak in the calorimetry curve of C3A hydration. Effects of calcium sulphate with different amounts of crystallisation water (anhydrite, hemihydrate and gypsum) on C3A hydration are also investigated, and it is found that the water of crystallisation does not have a significant impact on the kinetics of reaction or the formed hydrate phase assemblage.

5.
Chem Sci ; 12(43): 14420-14431, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34880993

ABSTRACT

The atomic structures, and thereby the coordination chemistry, of metal ions in aqueous solution represent a cornerstone of chemistry, since they provide first steps in rationalizing generally observed chemical information. However, accurate structural information about metal ion solution species is often surprisingly scarce. Here, the atomic structures of Ga3+ ion complexes were determined directly in aqueous solutions across a wide range of pH, counter anions and concentrations by X-ray pair distribution function analysis and 71Ga NMR. At low pH (<2) octahedrally coordinated gallium dominates as either monomers with a high degree of solvent ordering or as Ga-dimers. At slightly higher pH (pH ≈ 2-3) a polyoxogallate structure is identified as either Ga30 or Ga32 in contradiction with the previously proposed Ga13 Keggin structures. At neutral and slightly higher pH nanosized GaOOH particles form, whereas for pH > 12 tetrahedrally coordinated gallium ions surrounded by ordered solvent are observed. The effects of varying either the concentration or counter anion were minimal. The present study provides the first comprehensive structural exploration of the aqueous chemistry of Ga3+ ions with atomic resolution, which is relevant for both semiconductor fabrication and medical applications.

6.
Dalton Trans ; 49(38): 13449-13461, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32966463

ABSTRACT

Spinels are of essential interest in the solid-state sciences with numerous important materials adopting this crystal structure. One defining feature of spinel compounds is their ability to accommodate a high degree of tailorable point defects, and this significantly influences their physical properties. Standard defect models of spinels often only consider metal atom inversion between octahedral and tetrahedral sites, thereby neglecting other defects such as interstitial atoms. In addition, most studies rely on a single structural characterization technique, and this may bias the result and give uncertainty about the correct crystal structure. Here we explore the virtues of multi-technique investigations to limit method and model bias. We have used Pair Distribution Function analysis, Rietveld refinement and Maximum Entropy Method analysis of Powder X-ray Diffraction data, Zn edge Extended X-ray Absorption Fine Structure, and solid-state 27Al Nuclear Magnetic Resonance to study the structural defects in ZnAl2O4 spinel samples prepared by either microwave hydrothermal synthesis, supercritical flow synthesis, or spark plasma sintering. In addition, the samples were subjected to thermal post treatments. The study demonstrates that numerous synthesis dependent defects are present and that the different synthesis pathways allow for defect tailoring within the ZnAl2O4 structure. This suggests a pathway forward for optimization of the physical properties of spinel materials.

7.
Inorg Chem ; 59(11): 7768-7778, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32395988

ABSTRACT

Ammine metal borohydrides show potential for solid-state hydrogen storage and can be tailored toward hydrogen release at low temperatures. Here, we report the synthesis and structural characterization of seven new ammine metal borohydrides, M(BH4)3·nNH3, M = La (n = 6, 4, or 3) or Ce (n = 6, 5, 4, or 3). The two compounds with n = 6 are isostructural and have new orthorhombic structure types (space group P21212) built from cationic complexes, [M(NH3)6(BH4)2]+, and are charge balanced by BH4-. The structure of Ce(BH4)3·5NH3 is orthorhombic (space group C2221) and is built from cationic complexes, [Ce(NH3)5(BH4)2]+, and charge balanced by BH4-. These are rare examples of borohydride complexes acting both as a ligand and as a counterion in the same compound. The structures of M(BH4)3·4NH3 are monoclinic (space group C2), built from neutral molecular complexes of [M(NH3)4(BH4)3]. The new compositions, M(BH4)3·3NH3 (M = La, Ce), among ammine metal borohydrides, are orthorhombic (space group Pna21), containing molecular complexes of [M(NH3)3(BH4)3]. A revised structural model for A(BH4)3·5NH3 (A = Y, Gd, Dy) is presented, and the previously reported composition A(BH4)3·4NH3 (A = Y, La, Gd, Dy) is proposed in fact to be M(BH4)3·3NH3 along with a new structural model. The temperature-dependent structural properties and decomposition are investigated by in situ synchrotron radiation powder X-ray diffraction in vacuum and argon atmosphere and by thermal analysis combined with mass spectrometry. The compounds with n = 6, 5, and 4 mainly release ammonia at low temperatures, while hydrogen evolution occurs for M(BH4)3·3NH3 (M = La, Ce). Gas-release temperatures and gas composition from these compounds depend on the physical conditions and on the relative stability of M(BH4)3·nNH3 and M(BH4)3.

8.
ACS Omega ; 4(23): 20237-20243, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31815225

ABSTRACT

Leakage from cementitious structures with a retaining function can have devastating environmental consequences. Leaks can originate from cracks within the hardened cementitious material that is supposed to seal the structure off from the surrounding environment. Bioactive self-healing concretes containing bacteria capable of microbially inducing CaCO3 precipitation have been suggested to mitigate the healing of such cracks before leaking occurs. An important parameter determining the biocompatibility of concretes and cements is the pH environment. Therefore, a novel ratiometric pH optode imaging system based on an inexpensive single-lens reflex (SLR) camera was used to characterize the pH of porewater within cracks of submerged hydrated oil and gas well cement. This enabled the imaging of pH with a spatial distribution in high resolution (50 µm per pixel) and a gradient of 1.4 pH units per 1 mm. The effect of fly ash substitution and hydration time on the pH of the cement surface was evaluated by this approach. The results show that pH is significantly reduced from pH >11 to below 10 with increasing fly ash content as well as hydration time. The assessment of bioactivity in the cement was evaluated by introducing superabsorbent polymers with encapsulated Bacillus alkalinitrilicus endospores into the cracks. The bacterial activity was measured using oxygen optodes, which showed the highest bacterial activity with increasing amounts of fly ash substitution in the cement, correlating with the decrease in the pH. Overall, our results demonstrate that the pH of well cements can be reliably measured and modified to sustain the microbial activity.

9.
Dalton Trans ; 48(24): 8872-8881, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31140508

ABSTRACT

Octahydridoborate, i.e. [B3H8]- containing compounds, have recently attracted interest for hydrogen storage. In the present study, the structural, hydrogen storage, and ion conductivity properties of KB3H8 have been systematically investigated. Two distinct polymorphic transitions are identified for KB3H8 from a monoclinic (α) to an orthorhombic (α') structure at 15 °C via a second-order transition and eventually to a cubic (ß) structure at 30 °C by a first-order transition. The ß-polymorph of KB3H8 displays a high degree of disorder of the [B3H8]- anion, which facilitates increased cation mobility, reaching a K+ conductivity of ∼10-7 S cm-1 above 100 °C. ß-KB3H8 starts to release hydrogen at ∼160 °C, simultaneously with the release of B5H9 and trace amounts of B2H6. KBH4 and K3(BH4)(B12H12) are identified as crystalline decomposition products above 200 °C, and the formation of a KBH4 deficient structure of K3-x(BH4)1-x(B12H12) is observed at elevated temperature. The hydrogen-uptake properties of a KB3H8-2KH composite have been examined under 380 bar H2, resulting in the formation of KBH4 at T≥ 150 °C along with higher metal hydridoborates, i.e. K2B9H9, K2B10H10, and K2B12H12.

10.
J Am Chem Soc ; 140(48): 16711-16719, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30394730

ABSTRACT

Photocatalytic organic conversions involving a hydrogen transfer (HT) step have attracted much attention, but the efficiency and selectivity under visible light irradiation still needs to be significantly enhanced. Here we have developed a noble metal-free, basic-site engineered bismuth oxybromide [Bi24O31Br10(OH)δ] that can accelerate the photocatalytic HT step in both reduction and oxidation reactions, i.e., nitrobenzene to azo/azoxybenzene, quinones to quinols, thiones to thiols, and alcohols to ketones under visible light irradiation and ambient conditions. Remarkably, quantum efficiencies of 42% and 32% for the nitrobenzene reduction can be reached under 410 and 450 nm irradiation, respectively. The Bi24O31Br10(OH)δ photocatalyst also exhibits excellent performance in up-scaling and stability under visible light and even solar irradiation, revealing economic potential for industrial applications.

11.
Phys Chem Chem Phys ; 20(23): 16266-16275, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29863201

ABSTRACT

The hydrogen absorption properties of metal closo-borate/metal hydride composites, M2B10H10-8MH and M2B12H12-10MH, M = Li or Na, are studied under high hydrogen pressures to understand the formation mechanism of metal borohydrides. The hydrogen storage properties of the composites have been investigated by in situ synchrotron radiation powder X-ray diffraction at p(H2) = 400 bar and by ex situ hydrogen absorption measurements at p(H2) = 526 to 998 bar. The in situ experiments reveal the formation of crystalline intermediates before metal borohydrides (MBH4) are formed. On the contrary, the M2B12H12-10MH (M = Li and Na) systems show no formation of the metal borohydride at T = 400 °C and p(H2) = 537 to 970 bar. 11B MAS NMR of the M2B10H10-8MH composites reveal that the molar ratio of LiBH4 or NaBH4 and the remaining B species is 1 : 0.63 and 1 : 0.21, respectively. Solution and solid-state 11B NMR spectra reveal new intermediates with a B : H ratio close to 1 : 1. Our results indicate that the M2B10H10 (M = Li, Na) salts display a higher reactivity towards hydrogen in the presence of metal hydrides compared to the corresponding [B12H12]2- composites, which represents an important step towards understanding the factors that determine the stability and reversibility of high hydrogen capacity metal borohydrides for hydrogen storage.

12.
J Phys Chem B ; 122(12): 3184-3195, 2018 03 29.
Article in English | MEDLINE | ID: mdl-29513992

ABSTRACT

The structural arrangement of alkali-modified calcium aluminosilicate glasses has implications for important properties of these glasses in a wide range of industrial applications. The roles of sodium and potassium and their competition with calcium as network modifiers in peralkaline aluminosilicate glasses have been investigated by 27Al and 29Si MAS NMR spectroscopy. The 29Si MAS NMR spectra are simulated using two models for distributing Al in the silicate glass network. One model assumes a hierarchical, quasi-heterogeneous aluminosilicate network, whereas the other is based on differences in relative lattice energies between Si-O-Si, Al-O-Al, and Si-O-Al linkages. A systematic divergence between these simulations and the experimental 29Si NMR spectra is observed as a function of the sodium content exceeding that required for stoichiometric charge-balancing of the negatively charged AlO4 tetrahedra. Similar correlations between simulations and experimental 29Si NMR spectra cannot be made for the excess calcium content. Moreover, systematic variations in the 27Al isotropic chemical shifts and the second-order quadrupole effect parameters, derived from the 27Al MAS NMR spectra, are reported as a function of the SiO2 content. These observations strongly suggest that alkali ions preferentially charge-balance AlO43- as compared to alkaline earth (calcium) ions. In contrast, calcium dominates over the alkali ions in the formation of nonbridging oxygens associated with the SiO4 tetrahedra.

13.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 5): 931-940, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28980999

ABSTRACT

Two different two-dimensional thiostannates (SnS) were synthesized using tris(2-aminoethyl)amine (tren) or 1-(2-aminoethyl)piperidine (1AEP) as structure-directing agents. Both structures consist of negatively charged thiostannate layers with charge stabilizing cations sandwiched in-between. The fundamental building units are Sn3S4 broken-cube clusters connected by double sulfur bridges to form polymeric (Sn3S72-)n honeycomb hexagonal layers. The compounds are members of the R-SnS-1 family of structures, where R indicates the type of cation. Despite consisting of identical structural units, the band gaps of the two semiconducting compounds were found to differ substantially at 2.96 eV (violet-blue light) and 3.21 eV (UV light) for tren-SnS-1 and 1AEP-SnS-1, respectively. Aiming to explain the observed differences in optical properties, the structures of the two thiostannates were investigated in detail based on combined X-ray diffraction, solid-state 13C and 119Sn MAS NMR spectroscopy and scanning electron microscopy studies. The compound tren-SnS-1 has a hexagonal structure consisting of planar SnS layers with regular hexagonal pores and disordered cations, whereas 1AEP-SnS-1 has an orthorhombic unit cell with ordered cations, distorted hexagonal pores and non-planar SnS layers. In the formation of 1AEP-SnS-1, an intramolecular reaction of the structure-directing piperidine takes place to form an N-heterobicyclic cation through in situ C-H activation. Hirshfeld surface analysis was used to investigate the interaction between the SnS layers and cations in 1AEP-SnS-1 and revealed that the most nucleophilic part of the SnS sheets is one of the two crystallographically distinct double sulfur bridges.

14.
Phys Chem Chem Phys ; 18(39): 27545-27553, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27722466

ABSTRACT

Metal borides are often decomposition products from metal borohydrides and thus play a role in the reverse reaction where hydrogen is absorbed. In this work, aluminium boride, AlB2, has been investigated as a boron source for the formation of borohydrides under hydrogen pressures of p(H2) = 100 or 600 bar at elevated temperatures (350 or 400 °C). The systems AlB2-MHx (M = Li, Na, Mg, Ca) have been investigated, producing LiBH4, NaBH4 and Ca(BH4)2, whereas the formation of Mg(BH4)2 was not observed at T = 400 °C and p(H2) = 600 bar. The formation of the metal borohydrides is confirmed by powder X-ray diffraction and infrared spectroscopy and the fraction of boron in AlB2 and M(BH4)x is determined quantitatively by 11B MAS NMR. Hydrogenation for 12 h at T = 350-400 °C and p(H2) = 600 bar leads to the formation of substantial amounts of LiBH4 (38.6 mol%), NaBH4 (83.0 mol%) and Ca(BH4)2 (43.6 mol%).

15.
Sci Rep ; 5: 17526, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26643370

ABSTRACT

Transmission electron microscopy and related analytical techniques have been widely used to study the microstructure of different materials. However, few research works have been performed in the field of glasses, possibly due to the electron-beam irradiation damage. In this paper, we have developed a method based on electron energy loss spectroscopy (EELS) data acquisition and analyses, which enables determination of the boron speciation in a series of ternary alkali borosilicate glasses with constant molar ratios. A script for the fast acquisition of EELS has been designed, from which the fraction of BO4 tetrahedra can be obtained by fitting the experimental data with linear combinations of the reference spectra. The BO4 fractions (N4) obtained by EELS are consistent with those from (11)B MAS NMR spectra, suggesting that EELS can be an alternative and convenient way to determine the N4 fraction in glasses. In addition, the boron speciation of a CeO2 doped potassium borosilicate glass has been analyzed by using the time-resolved EELS spectra. The results clearly demonstrate that the BO4 to BO3 transformation induced by the electron beam irradiation can be efficiently suppressed by doping CeO2 to the borosilicate glasses.

16.
Inorg Chem ; 54(15): 7402-14, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26196159

ABSTRACT

Fourteen solvent- and halide-free ammine rare-earth metal borohydrides M(BH4)3·nNH3, M = Y, Gd, Dy, n = 7, 6, 5, 4, 2, and 1, have been synthesized by a new approach, and their structures as well as chemical and physical properties are characterized. Extensive series of coordination complexes with systematic variation in the number of ligands are presented, as prepared by combined mechanochemistry, solvent-based methods, solid-gas reactions, and thermal treatment. This new synthesis approach may have a significant impact within inorganic coordination chemistry. Halide-free metal borohydrides have been synthesized by solvent-based metathesis reactions of LiBH4 and MCl3 (3:1), followed by reactions of M(BH4)3 with an excess of NH3 gas, yielding M(BH4)3·7NH3 (M = Y, Gd, and Dy). Crystal structure models for M(BH4)3·nNH3 are derived from a combination of powder X-ray diffraction (PXD), (11)B magic-angle spinning NMR, and density functional theory (DFT) calculations. The structures vary from two-dimensional layers (n = 1), one-dimensional chains (n = 2), molecular compounds (n = 4 and 5), to contain complex ions (n = 6 and 7). NH3 coordinates to the metal in all compounds, while BH4(-) has a flexible coordination, i.e., either as a terminal or bridging ligand or as a counterion. M(BH4)3·7NH3 releases ammonia stepwise by thermal treatment producing M(BH4)3·nNH3 (6, 5, and 4), whereas hydrogen is released for n ≤ 4. Detailed analysis of the dihydrogen bonds reveals new insight about the hydrogen elimination mechanism, which contradicts current hypotheses. Overall, the present work provides new general knowledge toward rational materials design and preparation along with limitations of PXD and DFT for analysis of structures with a significant degree of dynamics in the structures.

17.
Phys Chem Chem Phys ; 16(19): 8970-80, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24695645

ABSTRACT

The detailed mechanism of hydrogen release in LiBH4-MgH2-Al composites of molar ratios 4 : 1 : 1 and 4 : 1 : 5 are investigated during multiple cycles of hydrogen release and uptake. This study combines information from several methods, i.e., in situ synchrotron radiation powder X-ray diffraction, (11)B magic-angle spinning (MAS) NMR, Sievert's measurements, Fourier transform infrared spectroscopy and simultaneous thermogravimetric analysis, differential scanning calorimetry and mass spectroscopy. The composites of LiBH4-MgH2-Al are compared with the behavior of the LiBH4-Al and LiBH4-MgH2 systems. The decomposition pathway of the LiBH4-MgH2-Al system is different for the two investigated molar ratios, although it ultimately results in the formation of LiAl, Mg(x)Al(1-x)B2 and Li2B12H12 in both cases. For the 4 : 1 : 1-molar ratio, Mg(0.9)Al(0.1) and Mg17Al12 are observed as intermediates. However, only Mg is observed as an intermediate in the 4 : 1 : 5-sample, which may be due to an earlier formation of Mg(x)Al(1-x)B2, reflecting the complex chemistry of Al-Mg phases. Hydrogen release and uptake reveals a decrease in the hydrogen storage capacity upon cycling. This loss reflects the formation of Li2B12H12 as observed by (11)B NMR and infrared spectroscopy for the cycled samples. Furthermore, it is shown that the Li2B12H12 formation can be limited significantly by applying moderate hydrogen partial pressure during decomposition.

18.
J Magn Reson ; 238: 20-5, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24291330

ABSTRACT

Mobile and cost-effective NMR spectroscopy exploiting low-field permanent magnets is a field of tremendous development with obvious applications for arrayed large scale analysis, field work, and industrial screening. So far such demonstrations have concentrated on relaxation measurements and lately high-resolution liquid-state NMR applications. With high-resolution solid-state NMR spectroscopy being increasingly important in a broad variety of applications, we here introduce low-field magic-angle spinning (MAS) solid-state multinuclear NMR based on a commercial ACT 0.45 T 62 mm bore Halbach magnet along with a homebuilt FPGA digital NMR console, amplifiers, and a modified standard 45 mm wide MAS probe for 7 mm rotors. To illustrate the performance of the instrument and address cases where the low magnetic field may offer complementarity to high-field NMR experiments, we demonstrate applications for (23)Na MAS NMR with enhanced second-order quadrupolar coupling effects and (31)P MAS NMR where reduced influence from chemical shift anisotropy at low field may facilitate determination of heteronuclear dipole-dipole couplings.

19.
Nanoscale ; 6(1): 599-607, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24247423

ABSTRACT

Nanoconfinement is a promising technique to improve the properties of nanomaterials such as the kinetics for hydrogen release and uptake and the stability during cycling. Here we present a systematic study of nanoconfined NaAlH4 in nanoporous scaffolds with increasing surface area and pore volume and almost constant pore sizes in the range of 8 to 11 nm. A resorcinol formaldehyde carbon aerogel was CO2-activated under different conditions and provided aerogels with BET surface areas of 704, 1267 and 2246 m(2) g(-1) and total pore volumes of 0.91, 1.30 and 2.21 mL g(-1), respectively. Nanoconfinement of NaAlH4 was achieved by melt infiltration and (27)Al MAS NMR reveals that the respective scaffolds incorporate 68, 82 and 91 wt% NaAlH4, for the above-mentioned samples, while the remaining fraction decomposes to metallic Al indicating that increasing CO2-activation tends to facilitate the infiltration process. The frequencies for the (23)Na and (27)Al MAS NMR centerband resonances from NaAlH4 vary systematically for the infiltrated samples and are shifted towards higher frequency and become more narrow with increasing degree of CO2 activation of the scaffolds. This new effect is attributed to increasing interactions with conduction electrons from increasingly graphite-/graphene-like scaffolds. The bulk versus nanoconfined ratio of NaAlH4 was investigated using Rietveld refinement, revealing that the majority of added NaAlH4 is confined inside the nanopores. The hydrogen desorption kinetics decreased with increasing surface area and the hydrogen storage capacity is more stable and decreases less during continuous hydrogen release and uptake cycles. In fact, the available amount of hydrogen (2.7 wt% H2) was more than doubled compared to the nanoconfinement in the non-activated carbon aerogel (1.3 wt% H2). Furthermore, it was demonstrated that Ti-functionalization of the CO2-activated aerogels combines the high storage capacity with fast hydrogen release kinetics from NaAlH4 which fully decomposes into Na3AlH6 at T ≤ 100 °C.

20.
Dalton Trans ; 42(32): 11672-82, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23838743

ABSTRACT

Barium monofluorophosphate, BaPO3F, was prepared in a polycrystalline form by fast precipitation, whereas single crystals were obtained using a long-lasting gel growth method. The samples were characterized by powder- and single-crystal X-ray diffraction, which revealed orthorhombic symmetry for the polycrystalline material and monoclinic symmetry for the single crystals. Both phases belong to the same order-disorder (OD) family and can be derived from the baryte structure (BaSO4) by replacing the SO4(2-) anions with isoelectronic PO3F(2-) anions in two orientations. BaPO3F can crystallize in an infinite number of locally equivalent layer stacking sequences. The polycrystalline material represents the family structure and is characterized by a purely random stacking of layers. Its structure is isotypic with the baryte structure and contains disordered PO3F(2-) anions. The single crystals [P21/c, Z = 4, a = 11.3105(7) Å, b = 8.6934(5) Å, c = 9.2231(4) Å, ß = 127.819(3)°, R[F(2) > 2σ(F(2))] = 0.036, 4146 structure factors, 110 parameters] crystallize as a polytype with a maximum degree of order (MDO), which can be regarded as a two-fold superstructure of the baryte-structure type. Fragments of the second MDO polytype are evidenced by systematic twinning by mirroring at (100). Solid-state (19)F and (31)P MAS NMR spectra of polycrystalline BaPO3F acquired at magnetic fields of 7.05 T and 14.09 T resolve resonances from two distinct (19)F sites and (31)P sites, in accordance with the local symmetry of the OD description. From these spectra, the (19)F chemical shift anisotropies and (1)J(P-F) couplings are determined for the two distinct (19)F sites and an average set of chemical shift anisotropy parameters for the two (31)P sites.


Subject(s)
Fluorides/chemistry , Phosphates/chemistry , Barium Sulfate/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...