Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 38(11): 1603-1611, 2023 11.
Article in English | MEDLINE | ID: mdl-37548352

ABSTRACT

Romosozumab treatment reduces the rate of hip fractures and increases hip bone density, increasing bone formation by inhibiting sclerostin protein. We studied the normal pattern of bone formation and osteocyte expression in the human proximal femur because it is relevant to both antisclerostin treatment effects and fracture. Having visualized and quantified buds of new bone formation in trabeculae, we hypothesized that they would coincide with areas of (a) higher mechanical stress and (b) low sclerostin expression by osteocytes. In patients with hip fracture, we visualized each bud of active modeling-based formation (forming minimodeling structure [FMiS]) in trabecular cores taken from different parts of the femoral head. Trabecular bone structure was also measured with high-resolution imaging. More buds of new bone formation (by volume) were present in the higher stress superomedial zone (FMiS density, N.FMiS/T.Ar) than lower stress superolateral (p < 0.05), and inferomedial (p < 0.001) regions. There were fewer sclerostin expressing osteocytes close to or within FMiS. FMiS density correlated with greater amount, thickness, number, and connectivity of trabeculae (bone volume BV/TV, r = 0.65, p < 0.0001; bone surface BS/TV, r = 0.47, p < 0.01; trabecular thickness Tb.Th, r = 0.55, p < 0.001; trabecular number Tb.N, r = 0.47, p < 0.01; and connectivity density Conn.D, r = 0.40, p < 0.05) and lower trabecular separation (Tb.Sp, r = -0.56, p < 0.001). These results demonstrate modeling-based bone formation in femoral trabeculae from patients with hip fracture as a potential therapeutic target to enhance bone structure. © 2023 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Hip Fractures , Osteocytes , Humans , Bone Density , Femur Head , Hip Fractures/diagnostic imaging , Osteogenesis
2.
J Anat ; 237(6): 1040-1048, 2020 12.
Article in English | MEDLINE | ID: mdl-32770847

ABSTRACT

In a series of human cadaveric experiments, Dr. Paul Segond first described the avulsion injury occurring at the anterolateral tibial plateau that later took his name. The fracture is thought to arise as a consequence of excessive tibia internal rotation which often also elicits damage to other connective tissue of the knee. The exact mechanism behind the avulsion is, however, unclear. A number of ligamentous structures have been proposed in separate studies to insert into the Segond fragment. Suggestions include the iliotibial band (ITB), biceps femoris and the controversial 'anterolateral ligament' (ALL). Despite increasing knowledge of tibial plateau bony microarchitecture in both healthy and disease states, no studies have yet, to our knowledge, considered the role of tibial sub-entheseal bone structure in pathogenesis of the Segond fracture. The goal of this study was thus to elucidate the differences in trabecular properties at regions across the tibial plateau in order to provide an explanation for the susceptibility of the anterolateral region to avulsion injury. Twenty human tibial plateaus from cadaveric donors were dissected and imaged using a Nikon-XTH225-µCT scanner with <80 µm isotropic voxel size. Scans were reconstructed using MicroView 3D Image Viewer and Analysis Tool. Subsequent virtual biopsy at ten anatomically defined regions of interest (ROI) generated estimates of bone volume fraction ('bone volume divided by total volume' (BV/TV)). The overall mean BV/TV value across all 20 tibiae and all 10 ROIs was 0.271. Univariate repeated-measurements ANOVA demonstrated that BV/TV values differed between ROIs. BV/TV values at the Segond site (Sα, Sß or Sγ) were lower than all other ROIs at 0.195, 0.192 and 0.193, respectively. This suggests that, notwithstanding inter- and intra-specimen variation, the Segond site tends to have a lower trabecular bone volume fraction than entheseal sites elsewhere on the tibia. Since BV/TV correlates with tensile and torsional strength, the lower BV/TV at the Segond site could equate to a region of local weakness in certain individuals which predisposes them to an avulsion injury following the application of force from excessive internal rotation. The low BV/TV recorded at the Segond site also challenges the idea that the fracture occurs due to pull from a discrete 'anterolateral ligament', as the tension exerted focally would be expected to elicit a hypertrophic response in line with Frost's Mechanostat hypothesis. Our data would instead agree with the aforementioned reports of the fibrous band at the Segond site being part of a broader insertion of an 'anterolateral complex'.


Subject(s)
Cancellous Bone/diagnostic imaging , Tibia/diagnostic imaging , Tibial Fractures/diagnostic imaging , Aged , Aged, 80 and over , Cancellous Bone/pathology , Female , Humans , Imaging, Three-Dimensional , Male , Tibia/pathology , Tibial Fractures/pathology , X-Ray Microtomography
3.
Bone ; 94: 124-134, 2017 01.
Article in English | MEDLINE | ID: mdl-27777119

ABSTRACT

BACKGROUND: Hip fractures are mainly caused by accidental falls and trips, which magnify forces in well-defined areas of the proximal femur. Unfortunately, the same areas are at risk of rapid bone loss with ageing, since they are relatively stress-shielded during walking and sitting. Focal osteoporosis in those areas may contribute to fracture, and targeted 3D measurements might enhance hip fracture prediction. In the FEMCO case-control clinical study, Cortical Bone Mapping (CBM) was applied to clinical computed tomography (CT) scans to define 3D cortical and trabecular bone defects in patients with acute hip fracture compared to controls. Direct measurements of trabecular bone volume were then made in biopsies of target regions removed at operation. METHODS: The sample consisted of CT scans from 313 female and 40 male volunteers (158 with proximal femoral fracture, 145 age-matched controls and 50 fallers without hip fracture). Detailed Cortical Bone Maps (c.5580 measurement points on the unfractured hip) were created before registering each hip to an average femur shape to facilitate statistical parametric mapping (SPM). Areas where cortical and trabecular bone differed from controls were visualised in 3D for location, magnitude and statistical significance. Measures from the novel regions created by the SPM process were then tested for their ability to classify fracture versus control by comparison with traditional CT measures of areal Bone Mineral Density (aBMD). In women we used the surgical classification of fracture location ('femoral neck' or 'trochanteric') to discover whether focal osteoporosis was specific to fracture type. To explore whether the focal areas were osteoporotic by histological criteria, we used micro CT to measure trabecular bone parameters in targeted biopsies taken from the femoral heads of 14 cases. RESULTS: Hip fracture patients had distinct patterns of focal osteoporosis that determined fracture type, and CBM measures classified fracture type better than aBMD parameters. CBM measures however improved only minimally on aBMD for predicting any hip fracture and depended on the inclusion of trabecular bone measures alongside cortical regions. Focal osteoporosis was confirmed on biopsy as reduced sub-cortical trabecular bone volume. CONCLUSION: Using 3D imaging methods and targeted bone biopsy, we discovered focal osteoporosis affecting trabecular and cortical bone of the proximal femur, among men and women with hip fracture.


Subject(s)
Hip Fractures/etiology , Osteoporosis/complications , Aged , Area Under Curve , Biopsy , Cortical Bone/pathology , Female , Femur Neck/pathology , Hip Fractures/pathology , Humans , Male , Odds Ratio , Osteoporosis/pathology , ROC Curve
4.
Calcif Tissue Int ; 93(5): 436-47, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23995764

ABSTRACT

(18)F-fluoride positron emission tomography ((18)F-PET) allows the assessment of regional bone formation and could have a role in the diagnosis of adynamic bone disease (ABD) in patients with chronic kidney disease (CKD). The purpose of this study was to examine bone formation at multiple sites of the skeleton in hemodialysis patients (CKD5D) and assess the correlation with bone biopsy. Seven CKD5D patients with suspected ABD and 12 osteoporotic postmenopausal women underwent an (18)F-PET scan, and bone plasma clearance, K i, was measured at ten skeletal regions of interest (ROI). Fifteen subjects had a transiliac bone biopsy following double tetracycline labeling. Two CKD5D patients had ABD confirmed by biopsy. There was significant heterogeneity in K i between skeletal sites, ranging from 0.008 at the forearm to 0.028 mL/min/mL at the spine in the CKD5D group. There were no significant differences in K i between the two study groups or between the two subjects with ABD and the other CKD5D subjects at any skeletal ROI. Five biopsies from the CKD5D patients had single tetracycline labels only, including the two with ABD. Using an imputed value of 0.3 µm/day for mineral apposition rate (MAR) for biopsies with single labels, no significant correlations were observed between lumbar spine K i corrected for BMAD (K i/BMAD) and bone formation rate (BFR/BS), or MAR. When biopsies with single labels were excluded, a significant correlation was observed between K i/BMAD and MAR (r = 0.81, p = 0.008) but not BFR/BS. Further studies are required to establish the sensitivity of (18)F-PET as a diagnostic tool for identifying CKD patients with ABD.


Subject(s)
Bone Diseases/diagnostic imaging , Fluorodeoxyglucose F18 , Osteogenesis , Positron-Emission Tomography/methods , Renal Dialysis , Renal Insufficiency, Chronic/diagnostic imaging , Renal Insufficiency, Chronic/therapy , Adult , Aged , Bone Density/physiology , Bone Diseases/etiology , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Male , Middle Aged , Renal Insufficiency, Chronic/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...