Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 7: 390, 2016.
Article in English | MEDLINE | ID: mdl-27047418

ABSTRACT

We examine investor behavior under interest and inflation risk in different scenarios. To that end, we analyze the relation between stock returns and unexpected changes in nominal and real interest rates and inflation for the US stock market. This relation is examined in detail by breaking the results down from the US stock market level to sector, sub-sector, and to individual industries as the ability of different industries to absorb unexpected changes in interest rates and inflation can vary by industry and by contraction and expansion sub-periods. While most significant relations are conventionally negative, some are consistently positive. This suggests some relevant implications on investor behavior. Thus, investments in industries with this positive relation can form a safe haven from unexpected changes in real and nominal interest rates. Gold has an insignificant beta during recessionary conditions hinting that Gold can be a safe haven during recessions. However, Gold also has a consistent negative relation to unexpected changes in inflation thereby damaging the claim that Gold is a hedge against inflation.

2.
Brain ; 135(Pt 3): 869-85, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22344585

ABSTRACT

In searching for persistent seizure-induced alterations in brain function that might be causally related to epilepsy, presynaptic transmitter release has relatively been neglected. To measure directly the long-term effects of pilocarpine-induced status epilepticus on vesicular release and recycling in hippocampal mossy fibre presynaptic boutons, we used (i) two-photon imaging of FM1-43 vesicular release in rat hippocampal slices; and (ii) transgenic mice expressing the genetically encoded pH-sensitive fluorescent reporter synaptopHluorin preferentially at glutamatergic synapses. In this study we found that, 1-2 months after pilocarpine-induced status epilepticus, there were significant increases in mossy fibre bouton size, faster rates of action potential-driven vesicular release and endocytosis. We also analysed the ultrastructure of rat mossy fibre boutons using transmission electron microscopy. Pilocarpine-induced status epilepticus led to a significant increase in the number of release sites, active zone length, postsynaptic density area and number of vesicles in the readily releasable and recycling pools, all correlated with increased release probability. Our data show that presynaptic release machinery is persistently altered in structure and function by status epilepticus, which could contribute to the development of the chronic epileptic state and may represent a potential new target for antiepileptic therapies.


Subject(s)
Convulsants , Epilepsy, Temporal Lobe/metabolism , Neurotransmitter Agents/metabolism , Pilocarpine , Receptors, Presynaptic/metabolism , Synaptic Vesicles/metabolism , Action Potentials/physiology , Animals , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Dentate Gyrus/pathology , Electrophysiological Phenomena , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/pathology , Fluorescent Dyes , Immunohistochemistry , Male , Mice , Microscopy, Confocal , Microscopy, Electron, Transmission , Mossy Fibers, Hippocampal/metabolism , Mossy Fibers, Hippocampal/pathology , Neuronal Plasticity , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology , Pyridinium Compounds , Quaternary Ammonium Compounds , Rats , Status Epilepticus/metabolism , Synaptic Vesicles/pathology , Tissue Fixation
3.
Neurosci Res ; 69(1): 73-80, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20933547

ABSTRACT

Functional properties of large conductance Ca(2+) activated potassium (BK) channels are determined by complex alternative splicing of the Kcnma1 gene encoding the alpha pore-forming subunit. Inclusion of the STREX exon in a C-terminal splice site is dynamically regulated and confers enhanced Ca(2+) sensitivity and channel inhibition via cAMP-dependent phosphorylation. Here, we describe a real time quantitative PCR (qPCR) approach to investigate relative changes in the expression of STREX and ZERO splice variants using a newly designed set of probes and primers for TaqMan-based qPCR analysis of cDNA from the rat dentate gyrus at different time points following pilocarpine-induced status epilepticus. Reduction in Kcnma1 gene expression is associated with a relative increase of STREX splice variant. Relative expression of STREX variant mRNA was increased at 10 days and at more than 1 month following status epilepticus. The biological consequences of seizure-related changes in alternative splicing of Kcnma1 deserve additional investigation.


Subject(s)
Alternative Splicing/genetics , Calcium/metabolism , Epilepsy, Temporal Lobe/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Animals , Dentate Gyrus/drug effects , Exons , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Models, Animal , Phosphorylation , Pilocarpine/pharmacology , Polymerase Chain Reaction/methods , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Wistar , Seizures/chemically induced , Status Epilepticus/chemically induced , Up-Regulation
4.
Brain Res ; 1368: 308-16, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-20971086

ABSTRACT

Voltage gated K(+) channels (Kv) are a highly diverse group of channels critical in determining neuronal excitability. Deficits of Kv channel subunit expression and function have been implicated in the pathogenesis of epilepsy. In this study, we investigate whether the expression of the specific subunit Kv3.4 is affected during epileptogenesis following pilocarpine-induced status epilepticus. For this purpose, we used immunohistochemistry, Western blotting assays and comparative analysis of gene expression using TaqMan-based probes and delta-delta cycle threshold (ΔΔCT) method of quantitative real-time polymerase chain reaction (qPCR) technique in samples obtained from age-matched control and epileptic rats. A marked down-regulation of Kv3.4 immunoreactivity was detected in the stratum lucidum and hilus of dentate gyrus in areas corresponding to the mossy fiber system of chronically epileptic rats. Correspondingly, a 20% reduction of Kv3.4 protein levels was detected in the hippocampus of chronic epileptic rats. Real-time quantitative PCR analysis of gene expression revealed that a significant 33% reduction of transcripts for Kv3.4 (gene Kcnc4) occurred after 1 month of pilocarpine-induced status epilepticus and persisted during the chronic phase of the model. These data indicate a reduced expression of Kv3.4 channels at protein and transcript levels in the epileptic hippocampus. Down-regulation of Kv3.4 in mossy fibers may contribute to enhanced presynaptic excitability leading to recurrent seizures in the pilocarpine model of temporal lobe epilepsy.


Subject(s)
Epilepsy/metabolism , Hippocampus/metabolism , Shaw Potassium Channels/metabolism , Animals , Dentate Gyrus/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Epilepsy/chemically induced , Gene Expression/drug effects , Mossy Fibers, Hippocampal/metabolism , Pilocarpine , Rats , Rats, Sprague-Dawley , Shaw Potassium Channels/genetics , Time Factors
5.
Brain Res ; 1348: 187-99, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20553876

ABSTRACT

Small conductance calcium (Ca(2+)) activated SK channels are critical regulators of neuronal excitability in hippocampus. Accordingly, these channels are thought to play a key role in controlling neuronal activity in acute models of epilepsy. In this study, we investigate the expression and function of SK channels in the pilocarpine model of mesial temporal lobe epilepsy. For this purpose, protein expression was assessed using western blotting assays and gene expression was analyzed using TaqMan-based probes and the quantitative real-time polymerase chain reaction (qPCR) comparative method delta-delta cycle threshold ( big up tri, open big up tri, openCT) in samples extracted from control and epileptic rats. In addition, the effect of SK channel antagonist UCL1684 and agonist NS309 on CA1 evoked population spikes was studied in hippocampal slices. Western blotting analysis showed a significant reduction in the expression of SK1 and SK2 channels at 10days following status epilepticus (SE), but levels recovered at 1month and at more than 2months after SE. In contrast, a significant down-regulation of SK3 channels was detected after 10days of SE. Analysis of gene expression by qPCR revealed a significant reduction of transcripts for SK2 (Kcnn1) and SK3 (Kcnn3) channels as early as 10days following pilocarpine-induced SE and during the chronic phase of the pilocarpine model. Moreover, bath application of UCL1684 (100nM for 15min) induced a significant increase of the population spike amplitude and number of spikes in the hippocampal CA1 area of slices obtained control and chronic epileptic rats. This effect was obliterated by co-administration of UCL1684 with SK channel agonist NS309 (1microM). Application of NS309 failed to modify population spikes in the CA1 area of slices taken from control and epileptic rats. These data indicate an abnormal expression of SK channels and a possible dysfunction of these channels in experimental MTLE.


Subject(s)
Gene Expression Regulation/drug effects , Membrane Potentials/drug effects , Muscarinic Agonists/adverse effects , Pilocarpine/adverse effects , Small-Conductance Calcium-Activated Potassium Channels/physiology , Status Epilepticus , Age Factors , Alkanes/pharmacology , Analysis of Variance , Animals , Disease Models, Animal , Drug Interactions , Hippocampus/pathology , In Vitro Techniques , Indoles/pharmacology , Male , Membrane Potentials/physiology , Neurons/drug effects , Neurons/physiology , Oximes/pharmacology , Quinolinium Compounds/pharmacology , Rats , Rats, Sprague-Dawley , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Small-Conductance Calcium-Activated Potassium Channels/drug effects , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Status Epilepticus/physiopathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...