Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vet Intern Med ; 38(2): 1177-1184, 2024.
Article in English | MEDLINE | ID: mdl-38363029

ABSTRACT

BACKGROUND: Phenylbutazone is often prescribed to manage pain caused by hyperinsulinemia-associated laminitis, but in diabetic people nonsteroidal anti-inflammatory drugs increase insulin secretion and pancreatic activity. HYPOTHESIS/OBJECTIVES: Investigate the effect of phenylbutazone administration on insulin secretion in horses. It was hypothesized that phenylbutazone will increase insulin secretion in horses with insulin dysregulation (ID). ANIMALS: Sixteen light breed horses, including 7 with ID. METHODS: Randomized cross-over study design. Horses underwent an oral glucose test (OGT) after 9 days of treatment with phenylbutazone (4.4 mg/kg IV q24h) or placebo (5 mL 0.9% saline). After a 10-day washout period, horses received the alternative treatment, and a second OGT was performed. Insulin and glucose responses were compared between groups (ID or controls) and treatments using paired t test and analyses of variance with P < .05 considered significant. RESULTS: In horses with ID, phenylbutazone treatment significantly decreased glucose concentration (P = .02), glucose area under the curve (2429 ± 501.5 vs 2847 ± 486.1 mmol/L × min, P = .02), insulin concentration (P = .03) and insulin area under the curve (17 710 ± 6676 vs 22 930 ± 8788 µIU/mL × min, P = .03) in response to an OGT. No significant effect was detected in control horses. CONCLUSION AND CLINICAL IMPORTANCE: Phenylbutazone administration in horses with ID decreases glucose and insulin concentrations in response to an OGT warranting further investigation of a therapeutic potential of phenylbutazone in the management of hyperinsulinemia-associated laminitis beyond analgesia.


Subject(s)
Dermatitis , Horse Diseases , Hyperinsulinism , Animals , Blood Glucose/analysis , Dermatitis/veterinary , Glucose , Glucose Tolerance Test/veterinary , Horse Diseases/drug therapy , Horses , Hyperinsulinism/drug therapy , Hyperinsulinism/veterinary , Insulin/metabolism , Insulin Secretion , Phenylbutazone/therapeutic use
2.
Animals (Basel) ; 12(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35625113

ABSTRACT

The frequent monitoring of a horse's body temperature post strenuous exercise is critical to prevent or alleviate exertional heat illness (EHI) from occurring. Percutaneous thermal sensing microchip (PTSM) technology has the potential to be used as a means of monitoring a horse's body temperature during and post-exercise. However, the accuracy of the temperature readings obtained, and their relationship to core body temperature are dependent on where they are implanted. This study aimed to document the relationship between core body temperature, and temperature readings obtained using PTSM implanted in different muscles, during exercise and post application of different cool-down methods. PTSMs were implanted into the right pectoral, right gluteal, right splenius muscles, and nuchal ligament. The temperatures were monitored during treadmill exercise, and post application of three different cool-down methods: no water application (Wno), water application only (Wonly), and water application following scraping (Wscraping). Central venous temperature (TCV) and PTSM temperatures from each region were obtained to investigate the optimal body site for microchip implantation. In this study, PTSM technology provided a practical, safe, and quick means of measuring body temperature in horses. However, its temperature readings varied depending on the implantation site. All muscle temperature readings exhibited strong relationships with TCV (r = 0.85~0.92, p < 0.05) after treadmill exercise without human intervention (water application), while the nuchal ligament temperature showed poor relationship with TCV. The relationships between TCV and PTSM temperatures became weaker with water application. Overall, however the pectoral muscle temperature measured by PTSM technology had the most constant relationships with TCV and showed the best potential to act as an alternate means of monitoring body temperature in horses for 50 min post-exercise, when there was no human intervention with cold water application.

SELECTION OF CITATIONS
SEARCH DETAIL
...