Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 39(14): 2709-2721, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30709895

ABSTRACT

The oculomotor system integrates a variety of visual signals into appropriate motor plans, but such integration can have widely varying time scales. For example, smooth pursuit eye movements to follow a moving target are slower and longer lasting than saccadic eye movements and it has been suggested that initiating a smooth pursuit eye movement involves an obligatory "open-loop" interval in which new visual motion signals presumably cannot influence the ensuing motor plan for up to 100 ms after movement initiation. However, this view is contrary to the idea that the oculomotor periphery has privileged access to short-latency visual signals. Here, we show that smooth pursuit initiation is sensitive to visual inputs, even in open-loop intervals. We instructed male rhesus macaque monkeys to initiate saccade-free smooth pursuit eye movements and injected a transient, instantaneous eye position error signal at different times relative to movement initiation. We found robust short-latency modulations in eye velocity and acceleration, starting only ∼50 ms after transient signal occurrence and even during open-loop pursuit initiation. Critically, the spatial direction of the injected position error signal had predictable effects on smooth pursuit initiation, with forward errors increasing eye acceleration and backward errors reducing it. Catch-up saccade frequencies and amplitudes were also similarly altered ∼50 ms after transient signals, much like the well known effects on microsaccades during fixation. Our results demonstrate that smooth pursuit initiation is highly sensitive to visual signals and that catch-up saccade generation is reset after a visual transient.SIGNIFICANCE STATEMENT Smooth pursuit eye movements allow us to track moving objects. The first ∼100 ms of smooth pursuit initiation are characterized by smooth eye acceleration and are overwhelmingly described as being "open-loop"; that is, unmodifiable by new visual motion signals. We found that all phases of smooth pursuit, including the so-called open-loop intervals, are reliably modifiable by visual signals. We injected transient flashes resulting in very brief, spatially specific position error signals to smooth pursuit and observed very short-latency changes in smooth eye movements to minimize such errors. Our results highlight the flexibility of the oculomotor system in reacting to environmental events and suggest a functional role for the pervasiveness of visual sensitivity in oculomotor control brain regions.


Subject(s)
Motion Perception/physiology , Photic Stimulation/methods , Pursuit, Smooth/physiology , Reaction Time/physiology , Saccades/physiology , Animals , Macaca mulatta , Male
2.
J Neurophysiol ; 121(2): 513-529, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30540500

ABSTRACT

Two main types of small eye movements occur during gaze fixation: microsaccades and slow ocular drifts. While microsaccade generation has been relatively well studied, ocular drift control mechanisms are unknown. Here we explored the degree to which monkey smooth eye movements, on the velocity scale of slow ocular drifts, can be generated systematically. Two male rhesus macaque monkeys tracked a spot moving sinusoidally, but slowly, along the horizontal or vertical direction. Maximum target displacement in the motion trajectory was 30 min arc (0.5°), and we varied the temporal frequency of target motion from 0.2 to 5 Hz. We obtained an oculomotor "transfer function" by measuring smooth eye velocity gain (relative to target velocity) as a function of frequency, similar to past work with large-amplitude pursuit. Monkey eye velocities as slow as those observed during slow ocular drifts were clearly target motion driven. Moreover, as with large-amplitude smooth pursuit, eye velocity gain varied with temporal frequency. However, unlike with large-amplitude pursuit, exhibiting low-pass behavior, small-amplitude motion tracking was band pass, with the best ocular movement gain occurring at ~0.8-1 Hz. When oblique directions were tested, we found that the horizontal component of pursuit gain was larger than the vertical component. Our results provide a catalog of the control abilities of the monkey oculomotor system for slow target motions, and they also support the notion that smooth fixational ocular drifts are controllable. This has implications for neural investigations of drift control and the image-motion consequences of drifts on visual coding in early visual areas. NEW & NOTEWORTHY We studied the efficacy of monkey smooth pursuit eye movements for very slow target velocities. Pursuit was impaired for sinusoidal motions of frequency less than ~0.8-1 Hz. Nonetheless, eye trajectory was still sinusoidally modulated, even at velocities lower than those observed during gaze fixation with slow ocular drifts. Our results characterize the slow control capabilities of the monkey oculomotor system and provide a basis for future understanding of the neural mechanisms for slow ocular drifts.


Subject(s)
Fixation, Ocular , Pursuit, Smooth , Animals , Biomechanical Phenomena , Macaca mulatta , Male , Motion Perception
3.
Curr Biol ; 28(9): 1357-1369.e5, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29681477

ABSTRACT

Animals continuously integrate sensory information and select contextually appropriate responses. Here, we show that zebrafish larvae select a behavioral response to acoustic stimuli from a pre-existing choice repertoire in a context-dependent manner. We demonstrate that this sensorimotor choice is modulated by stimulus quality and history, as well as by neuromodulatory systems-all hallmarks of more complex decision making. Moreover, from a genetic screen coupled with whole-genome sequencing, we identified eight mutants with deficits in this sensorimotor choice, including mutants of the vertebrate-specific G-protein-coupled extracellular calcium-sensing receptor (CaSR), whose function in the nervous system is not well understood. We demonstrate that CaSR promotes sensorimotor decision making acutely through Gαi/o and Gαq/11 signaling, modulated by clathrin-mediated endocytosis. Combined, our results identify the first set of genes critical for behavioral choice modulation in a vertebrate and reveal an unexpected critical role for CaSR in sensorimotor decision making.


Subject(s)
Choice Behavior/physiology , Mutation , Psychomotor Performance , Receptors, Calcium-Sensing/physiology , Zebrafish Proteins/physiology , Zebrafish/physiology , Acoustic Stimulation , Animals , Behavior, Animal , Calcium/metabolism , Genetic Testing , Receptors, Calcium-Sensing/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics
4.
PLoS One ; 12(6): e0178854, 2017.
Article in English | MEDLINE | ID: mdl-28575069

ABSTRACT

Adult vertebrates have retained the ability to regenerate peripheral nerves after injury, although regeneration is frequently incomplete, often leading to functional impairments. Small molecule screens using whole organisms have high potential to identify biologically relevant targets, yet currently available assays for in vivo peripheral nerve regeneration are either very laborious and/or require complex technology. Here we take advantage of the optical transparency of larval zebrafish to develop a simple and fast pectoral fin removal assay that measures peripheral nerve regeneration in vivo. Twenty-four hours after fin amputation we observe robust and stereotyped nerve regrowth at the fin base. Similar to laser mediated nerve transection, nerve regrowth after fin amputation requires Schwann cells and FGF signaling, confirming that the fin amputation assay identifies pathways relevant for peripheral nerve regeneration. From a library of small molecules with known targets, we identified 21 compounds that impair peripheral nerve regeneration. Several of these compounds target known regulators of nerve regeneration, further validating the fin removal assay. Twelve of the identified compounds affect targets not previously known to control peripheral nerve regeneration. Using a laser-mediated nerve transection assay we tested ten of those compounds and confirmed six of these compounds to impair peripheral nerve regeneration: an EGFR inhibitor, a glucocorticoid, prostaglandin D2, a retinoic acid agonist, an inhibitor of calcium channels and a topoisomerase I inhibitor. Thus, we established a technically simple assay to rapidly identify valuable entry points into pathways critical for vertebrate peripheral nerve regeneration.


Subject(s)
Nerve Regeneration , Peripheral Nerves/growth & development , Small Molecule Libraries , Amputation, Surgical , Animals , Topoisomerase I Inhibitors/pharmacology , Zebrafish
5.
Neuron ; 85(6): 1200-11, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25754827

ABSTRACT

Habituation represents a fundamental form of learning, yet the underlying molecular genetic mechanisms are not well defined. Here we report on a genome-wide genetic screen, coupled with whole-genome sequencing, that identified 14 zebrafish startle habituation mutants including mutants of the vertebrate-specific gene pregnancy-associated plasma protein-aa (pappaa). PAPP-AA encodes an extracellular metalloprotease known to increase IGF bioavailability, thereby enhancing IGF receptor signaling. We find that pappaa is expressed by startle circuit neurons, and expression of wild-type but not a metalloprotease-inactive version of pappaa restores habituation in pappaa mutants. Furthermore, acutely inhibiting IGF1R function in wild-type reduces habituation, while activation of IGF1R downstream effectors in pappaa mutants restores habituation, demonstrating that pappaa promotes learning by acutely and locally increasing IGF bioavailability. In sum, our results define the first functional gene set for habituation learning in a vertebrate and identify PAPPAA-regulated IGF signaling as a novel mechanism regulating habituation learning.


Subject(s)
Genome, Archaeal , Learning/physiology , Mutation/genetics , Pregnancy-Associated Plasma Protein-A/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction/genetics , Zebrafish/metabolism , Animals , Behavior, Animal , Female , Genetic Testing/methods , Neurons/metabolism , Pregnancy , Pregnancy-Associated Plasma Protein-A/genetics , Receptor, IGF Type 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...