Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 13(11): 1028-1034, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30201990

ABSTRACT

Domain walls in ferroelectric semiconductors show promise as multifunctional two-dimensional elements for next-generation nanotechnology. Electric fields, for example, can control the direct-current resistance and reversibly switch between insulating and conductive domain-wall states, enabling elementary electronic devices such as gates and transistors. To facilitate electrical signal processing and transformation at the domain-wall level, however, an expansion into the realm of alternating-current technology is required. Here, we demonstrate diode-like alternating-to-direct current conversion based on neutral ferroelectric domain walls in ErMnO3. By combining scanning probe and dielectric spectroscopy, we show that the rectification occurs at the tip-wall contact for frequencies at which the walls are effectively pinned. Using density functional theory, we attribute the responsible transport behaviour at the neutral walls to an accumulation of oxygen defects. The practical frequency regime and magnitude of the direct current output are controlled by the bulk conductivity, establishing electrode-wall junctions as versatile atomic-scale diodes.

2.
Nat Commun ; 7: 13745, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27924812

ABSTRACT

Hexagonal manganites, h-RMnO3 (R=Sc, Y, Ho-Lu), have been intensively studied for their multiferroic properties, magnetoelectric coupling, topological defects and electrically conducting domain walls. Although point defects strongly affect the conductivity of transition metal oxides, the defect chemistry of h-RMnO3 has received little attention. We use a combination of experiments and first principles electronic structure calculations to elucidate the effect of interstitial oxygen anions, Oi, on the electrical and structural properties of h-YMnO3. Enthalpy stabilized interstitial oxygen anions are shown to be the main source of p-type electronic conductivity, without reducing the spontaneous ferroelectric polarization. A low energy barrier interstitialcy mechanism is inferred from Density Functional Theory calculations to be the microscopic migration path of Oi. Since the Oi content governs the concentration of charge carrier holes, controlling the thermal and atmospheric history provides a simple and fully reversible way of tuning the electrical properties of h-RMnO3.

SELECTION OF CITATIONS
SEARCH DETAIL
...