Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Cell Sci ; 134(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33737317

ABSTRACT

Rab5 and Rab7a are the main determinants of early and late endosomes and are important regulators of endosomal progression. The transport from early endosomes to late endosome seems to be regulated through an endosomal maturation switch, where Rab5 is gradually exchanged by Rab7a on the same endosome. Here, we provide new insight into the mechanism of endosomal maturation, for which we have discovered a stepwise Rab5 detachment, sequentially regulated by Rab7a. The initial detachment of Rab5 is Rab7a independent and demonstrates a diffusion-like first-phase exchange between the cytosol and the endosomal membrane, and a second phase, in which Rab5 converges into specific domains that detach as a Rab5 indigenous endosome. Consequently, we show that early endosomal maturation regulated through the Rab5-to-Rab7a switch induces the formation of new fully functional Rab5-positive early endosomes. Progression through stepwise early endosomal maturation regulates the direction of transport and, concomitantly, the homeostasis of early endosomes.


Subject(s)
Endosomes , rab5 GTP-Binding Proteins , Endosomes/metabolism , Transport Vesicles/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
2.
EBioMedicine ; 58: 102902, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32707448

ABSTRACT

BACKGROUND: The developing zebrafish is an emerging tool in nanomedicine, allowing non-invasive live imaging of the whole animal at higher resolution than is possible in the more commonly used mouse models. In addition, several transgenic fish lines are available endowed with selected cell types expressing fluorescent proteins; this allows nanoparticles to be visualized together with host cells. METHODS: Here, we introduce the zebrafish neural tube as a robust injection site for cancer cells, excellently suited for high resolution imaging. We use light and electron microscopy to evaluate cancer growth and to follow the fate of intravenously injected nanoparticles. FINDINGS: Fluorescently labelled mouse melanoma B16 cells, when injected into this structure proliferated rapidly and stimulated angiogenesis of new vessels. In addition, macrophages, but not neutrophils, selectively accumulated in the tumour region. When injected intravenously, nanoparticles made of Cy5-labelled poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate) (PEG-PDPA) selectively accumulated in the neural tube cancer region and were seen in individual cancer cells and tumour associated macrophages. Moreover, when doxorubicin was released from PEG-PDPA, in a pH dependant manner, these nanoparticles could strongly reduce toxicity and improve the treatment outcome compared to the free drug in zebrafish xenotransplanted with mouse melanoma B16 or human derived melanoma cells. INTERPRETATION: The zebrafish has the potential of becoming an important intermediate step, before the mouse model, for testing nanomedicines against patient-derived cancer cells. FUNDING: We received funding from the Norwegian research council and the Norwegian cancer society.


Subject(s)
Doxorubicin/administration & dosage , Melanoma, Experimental/diagnostic imaging , Melanoma, Experimental/drug therapy , Polymethacrylic Acids/administration & dosage , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/drug therapy , Administration, Intravenous , Animals , Carbocyanines/chemistry , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Humans , Macrophages/chemistry , Melanoma, Experimental/chemistry , Melanoma, Experimental/pathology , Mice , Microscopy, Electron , Nanoparticles , Neoplasm Transplantation , Neural Tube/chemistry , Neutrophils/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Skin Neoplasms/chemistry , Skin Neoplasms/pathology , Treatment Outcome , Zebrafish
3.
Biomed Res Int ; 2019: 5496197, 2019.
Article in English | MEDLINE | ID: mdl-31583245

ABSTRACT

BACKGROUND AND AIMS: Vascular endothelial growth factor (VEGF) receptors (VEGFR1 and VEGFR2) bind VEGF-A with high affinity. This study sought to determine the relative contributions of these two receptors to receptor-mediated endocytosis of VEGF-A and to clarify their endocytic itineraries in rat liver sinusoidal endothelial cells (LSECs). METHODS: Isolated LSECs and radiolabeled VEGF-A were used to examine surface binding and receptor-mediated endocytosis. Quantitative real time RT-PCR (Q-RT-PCR) and Western blotting were applied to demonstrate receptor expression. RESULTS: Q-RT-PCR analysis showed that VEGFR1 and VEGFR2 mRNA were expressed in LSECs. Ligand saturation analysis at 4°C indicated two different classes of [125I]-VEGFA binding sites on LSECs with apparent dissociation constants of 8 and 210 pM. At 37°C, LSECs efficiently took up and degraded [125I]-VEGF-A for at least 2 hours. Uptake of [125I]-VEGF-A by LSECs was blocked by dynasore that inhibits dynamin-dependent internalization, whereas inhibition of cysteine proteases by leupeptin inhibited degradation without affecting the uptake of [125I]-VEGF-A, suggesting that it is degraded following transport to lysosomes. Incubation of LSECs in the continued presence of a saturating concentration of unlabeled VEGF-A at 37°C was associated with a loss of as much as 75% of the total VEGFR2 within 30 min as shown by Western blot analysis, whereas there was no appreciable decrease in protein levels for VEGFR1 after 120 min incubation, suggesting that VEGF-A stimulation downregulates VEGFR2, but not VEGFR1, in LSECs. This possibility was supported by the observation that a hexapeptide that specifically blocks VEGF-A binding to VEGFR1 caused a marked reduction in the uptake of [125I]-VEGF-A, whereas a control peptide had no effect. Finally, live cell imaging studies using a fluorescently labeled anti-VEGFR2 antibody showed that VEGFR2 was transported via early and late endosomes to reach endolysosomes where degradation of the VEGFR2 takes place. CONCLUSION: Our studies suggest that, subsequent to VEGF-A binding and internalization, the unoccupied VEGFR1 may recycle to the cell surface allowing its reutilization, whereas the majority of the internalized VEGFR2 is targeted for degradation.


Subject(s)
Liver/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Animals , Cell Membrane/genetics , Endocytosis/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Expression Regulation/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver/pathology , RNA, Messenger/genetics , Rats , Signal Transduction/genetics
4.
Front Immunol ; 9: 1684, 2018.
Article in English | MEDLINE | ID: mdl-30083157

ABSTRACT

CD4+ T cells can induce potent anti-tumor immune responses. Due to the lack of MHC class II expression in most cancer cells, antigen recognition occurs indirectly via uptake and presentation on tumor-infiltrating antigen-presenting cells (APCs). Activation of the APCs can induce tumor rejection, but the mechanisms underlying tumor killing by such cells have not been established. To elucidate the molecular basis of CD4+ T-cell-mediated tumor rejection, we utilized a murine model of multiple myeloma, in which the T cells recognize a secreted tumor neoantigen. Our findings demonstrate that T cell recognition triggers inducible nitric oxide synthase activity within tumor-infiltrating macrophages. Diffusion of nitric oxide into surrounding tumor cells results in intracellular accumulation of toxic secondary oxidants, notably peroxynitrite. This results in tumor cell apoptosis through activation of the mitochondrial pathway. We find that this mode of cytotoxicity has strict spatial limitations, and is restricted to the immediate surroundings of the activated macrophage, thus limiting bystander killing. These findings provide a molecular basis for macrophage-mediated anti-tumor immune responses orchestrated by CD4+ T cells. Since macrophages are abundant in most solid tumors, evoking the secretion of nitric oxide by such cells may represent a potent therapeutic strategy.

5.
ACS Nano ; 12(8): 8646-8661, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30081622

ABSTRACT

The enhanced permeability and retention (EPR) effect is the only described mechanism enabling nanoparticles (NPs) flowing in blood to reach tumors by a passive targeting mechanism. Here, using the transparent zebrafish model infected with Mycobacterium marinum we show that an EPR-like process also occurs allowing different types of NPs to extravasate from the vasculature to reach granulomas that assemble during tuberculosis (TB) infection. PEGylated liposomes and other NP types cross endothelial barriers near infection sites within minutes after injection and accumulate close to granulomas. Although ∼100 and 190 nm NPs concentrated most in granulomas, even ∼700 nm liposomes reached these infection sites in significant numbers. We show by confocal microscopy that NPs can concentrate in small aggregates in foci on the luminal side of the endothelium adjacent to the granulomas. These spots are connected to larger foci of NPs on the ablumenal side of these blood vessels. EM analysis suggests that NPs cross the endothelium via the paracellular route. PEGylated NPs also accumulated efficiently in granulomas in a mouse model of TB infection with Mycobacterium tuberculosis, arguing that the zebrafish embryo model can be used to predict NP behavior in mammalian hosts. In earlier studies we and others showed that uptake of NPs by macrophages that are attracted to infection foci is one pathway for NPs to reach TB granulomas. This study reveals that when NPs are designed to avoid macrophage uptake, they can also efficiently target granulomas via an alternative mechanism that resembles EPR.


Subject(s)
Disease Models, Animal , Granuloma/metabolism , Mycobacterium marinum/chemistry , Nanoparticles/metabolism , Pulmonary Artery/metabolism , Tuberculosis, Pulmonary/metabolism , Zebrafish/microbiology , Animals , Granuloma/microbiology , Mice , Microscopy, Confocal , Mycobacterium marinum/metabolism , Nanoparticles/chemistry , Permeability , Pulmonary Artery/microbiology , Tuberculosis, Pulmonary/microbiology
6.
Sci Rep ; 7(1): 17962, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269784

ABSTRACT

Activation of EGF-R and PDGF-R triggers autophosphorylation and the recruitment of Eps15 and Hrs. These two endosomal proteins are important for specific receptor sorting. Hrs is recruiting ubiquitinated receptors to early endosomes to further facilitate degradation through the ESCRT complex. Upon receptor activation Hrs becomes phosphorylated and is relocated to the cytosol, important for receptor degradation. In this work we have studied the endosomal binding dynamics of Eps15 and Hrs upon EGF-R and PDGF-R stimulation. By analysing the fluorescence intensity on single endosomes after ligand stimulation we measured a time-specific decrease in the endosomal fluorescence level of Eps15-GFP and Hrs-YFP. Through FRAP experiments we could further register a specific change in the endosomal-membrane to cytosol binding properties of Eps15-GFP and Hrs-YFP. This specific change in membrane fractions proved to be a redistribution of the immobile fraction, which was not shown for the phosphorylation deficient mutants. We here describe a mechanism that can explain the previously observed relocation of Hrs from the endosomes to cytosol after EGF stimulation and show that Eps15 follows a similar mechanism. Moreover, this specific redistribution of the endosomal protein binding dynamics proved to be of major importance for receptor degradation.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Phosphoproteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Cell Line , Fibroblasts/metabolism , Humans , Immunoprecipitation , Kinetics , Microscopy, Confocal
7.
Traffic ; 17(3): 211-29, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26663757

ABSTRACT

Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose-6-phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation-independent (CI-MPR) away from the Golgi yet, has no effect on the retrograde transport of CI-MPR. We also show that CI-MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. CI-MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI-MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI-MPR to the endosomal pathway, entering the maturing endosome at the early-to-late transition.


Subject(s)
Endosomes/metabolism , Receptor, IGF Type 2/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Dogs , Endocytosis , HeLa Cells , Humans , Madin Darby Canine Kidney Cells , Membrane Glycoproteins/metabolism , Mutation, Missense , Protein Transport , rab GTP-Binding Proteins/genetics , trans-Golgi Network/metabolism
8.
J Exp Biol ; 218(Pt 20): 3257-63, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26347551

ABSTRACT

The consensus view of olfactory processing is that the axons of receptor-specific primary olfactory sensory neurons (OSNs) converge to a small subset of glomeruli, thus preserving the odour identity before the olfactory information is processed in higher brain centres. In the present study, we show that two different subsets of ciliated OSNs with different odorant specificities converge to the same glomeruli. In order to stain different ciliated OSNs in the crucian carp Carassius carassius we used two different chemical odorants, a bile salt and a purported alarm substance, together with fluorescent dextrans. The dye is transported within the axons and stains glomeruli in the olfactory bulb. Interestingly, the axons from the ciliated OSNs co-converge to the same glomeruli. Despite intermingled innervation of glomeruli, axons and terminal fields from the two different subsets of ciliated OSNs remained mono-coloured. By 4-6 days after staining, the dye was transported trans-synaptically to separately stained axons of relay neurons. These findings demonstrate that specificity of the primary neurons is retained in the olfactory pathways despite mixed innervation of the olfactory glomeruli. The results are discussed in relation to the emerging concepts about non-mammalian glomeruli.


Subject(s)
Carps/physiology , Olfactory Bulb/metabolism , Olfactory Pathways/physiology , Olfactory Receptor Neurons/drug effects , Smell , Animals , Coloring Agents , Dextrans , Hypoxanthines/pharmacology , Olfactory Bulb/drug effects , Olfactory Pathways/drug effects , Olfactory Receptor Neurons/metabolism , Synapses/metabolism , Taurolithocholic Acid/pharmacology
9.
Pharm Res ; 32(4): 1249-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25288014

ABSTRACT

PURPOSE: The aim of this study was to design stimuli-responsive nanocarriers for anti-cancer drug delivery. For this purpose, doxorubicin (DOX)-loaded, polysebacic anhydride (PSA) based nanocapsules (NC) were combined with pH-sensitive poly (L-histidine) (PLH). METHOD: PSA nano-carriers were first loaded with DOX and were coated with poly L-histidine to introduce pH sensitivity. The PLH-coated NCs were then covered with polyethylene glycol (PEG) to reduce macrophage uptake. The drug release profile from this system was examined in two different buffer solutions prepared as acidic (pH5) and physiological (pH 7.4) media. The physical and chemical properties of the nanocapsules were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), ultraviolet and visible absorption spectroscopy (UV-VIS), and scanning electron microscopy (SEM). In vitro studies of the prepared nanocapsules were conducted in MDA-MB-231 breast cancer cells. RESULTS: The results obtained by SEM and DLS revealed that nanocapsules have spherical morphology with an average size of 230 nm. Prepared pH sensitive nanocapsules exhibited pH-dependent drug release profile and promising intracellular release of drug. PEGylation of nanoparticles significantly prevented macrophage uptake compared to non-PEGylated particles.


Subject(s)
Anhydrides/chemistry , Antibiotics, Antineoplastic/administration & dosage , Decanoic Acids/chemistry , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Nanocapsules/chemistry , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/pharmacology , Drug Liberation , Histidine/chemistry , Humans , Hydrogen-Ion Concentration , Macrophages/drug effects , Macrophages/metabolism , Particle Size , Polyethylene Glycols/chemistry , Surface Properties
10.
ACS Nano ; 8(7): 7014-26, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24945994

ABSTRACT

Nanoparticles (NPs) enclosing antibiotics have provided promising therapy against Mycobacterium tuberculosis (Mtb) in different mammalian models. However, the NPs were not visualized in any of these animal studies. Here, we introduce the transparent zebrafish embryo as a system for noninvasive, simultaneous imaging of fluorescent NPs and the fish tuberculosis (TB) agent Mycobacterium marinum (Mm). The study was facilitated by the use of transgenic lines of macrophages, neutrophils, and endothelial cells expressing fluorescent markers readily visible in the live vertebrate. Intravenous injection of Mm led to phagocytosis by blood macrophages. These remained within the vasculature until 3 days postinfection where they started to extravasate and form aggregates of infected cells. Correlative light/electron microscopy revealed that these granuloma-like structures had significant access to the vasculature. Injection of NPs induced rapid uptake by both infected and uninfected macrophages, the latter being actively recruited to the site of infection, thereby providing an efficient targeting into granulomas. Rifampicin-loaded NPs significantly improved embryo survival and lowered bacterial load, as shown by quantitative fluorescence analysis. Our results argue that zebrafish embryos offer a powerful system for monitoring NPs in vivo and rationalize why NP therapy was so effective against Mtb in earlier studies; bacteria and NPs share the same cellular niche.


Subject(s)
Drug Carriers/chemistry , Embryo, Nonmammalian/microbiology , Mycobacterium marinum/drug effects , Nanoparticles/chemistry , Optical Imaging , Zebrafish/embryology , Zebrafish/microbiology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biological Transport , Coumarins/chemistry , Drug Carriers/metabolism , Granuloma/microbiology , Lactic Acid/chemistry , Macrophages/microbiology , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium marinum/physiology , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Rhodamines/chemistry , Rifampin/chemistry , Rifampin/pharmacology , Thiazoles/chemistry , Tuberculosis/microbiology , Tuberculosis/veterinary
11.
Eur J Immunol ; 43(10): 2577-87, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23839948

ABSTRACT

An enormous number of B cells with different B-cell receptors (BCRs) are continuously produced in the bone marrow. BCRs are further diversified during the germinal center reaction. Due to extensive recirculation, B cells with mutually binding BCR are likely to meet in lymphoid organs. We have addressed possible outcomes of such an encounter in vitro. B lymphoma cells were transfected with complementary BCR, one transfectant expressing an Idiotype⁺ (Id⁺) BCR and the other an anti-Id BCR. To exclude confounding effects of secreted Ig, the transfected B lymphoma cells only expressed membrane IgD. Coincubation of paired Id⁺/anti-Id lymphoma cells results in conjugate formation, signaling, activation of Caspase 3/7, and apoptosis of at least one of the two cells in the pair. Our data provide suggestive evidence for a mechanism whereby the B-cell compartment is partly purged of B cells with complementary BCRs.


Subject(s)
B-Lymphocytes/immunology , Immune Tolerance , Immunoglobulin D/metabolism , Immunoglobulin Variable Region/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Antibodies, Anti-Idiotypic/genetics , Antibodies, Anti-Idiotypic/metabolism , Apoptosis/genetics , Apoptosis/immunology , Bone Marrow/immunology , Caspase 3/metabolism , Caspase 7/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Line, Tumor , Coculture Techniques , Immunoglobulin D/genetics , Lymphocyte Activation/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Signal Transduction/immunology , Transgenes/genetics
12.
J Cell Sci ; 125(Pt 8): 1910-9, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22357949

ABSTRACT

Organelles in the endocytic pathway interact and communicate through the crucial mechanisms of fusion and fission. However, any specific link between fusion and fission has not yet been determined. To study the endosomal interactions with high spatial and temporal resolution, we enlarged the endosomes by two mechanistically different methods: by expression of the MHC-class-II-associated chaperone invariant chain (Ii; or CD74) or Rab5, both of which increased the fusion rate of early endosomes and resulted in enlarged endosomes. Fast homotypic fusions were studied, and immediately after the fusion a highly active and specific tubule formation and fission was observed. These explosive tubule formations following fusion seemed to be a direct effect of fusion. The tubule formations were dependent on microtubule interactions, and specifically controlled by Kif16b and dynein. Our results show that fusion of endosomes is a rapid process that destabilizes the membrane and instantly induces molecular-motor-driven tubule formation and fission.


Subject(s)
Dyneins/metabolism , Endosomes/metabolism , Kinesins/metabolism , Membrane Fusion , Microtubules/metabolism , Molecular Motor Proteins/metabolism , Animals , Cell Line , Dogs , Endocytosis , Humans , rab5 GTP-Binding Proteins/metabolism
13.
Immunity ; 33(4): 583-96, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-20933442

ABSTRACT

Toll-like receptor 4 (TLR4) is indispensable for recognition of Gram-negative bacteria. We described a trafficking pathway for TLR4 from the endocytic recycling compartment (ERC) to E. coli phagosomes. We found a prominent colocalization between TLR4 and the small GTPase Rab11a in the ERC, and Rab11a was involved in the recruitment of TLR4 to phagosomes in a process requiring TLR4 signaling. Also, Toll-receptor-associated molecule (TRAM) and interferon regulatory factor-3 (IRF3) localized to E. coli phagosomes and internalization of E. coli was required for a robust interferon-ß induction. Suppression of Rab11a reduced TLR4 in the ERC and on phagosomes leading to inhibition of the IRF3 signaling pathway induced by E. coli, whereas activation of the transcription factor NF-κB was unaffected. Moreover, Rab11a silencing reduced the amount of TRAM on phagosomes. Thus, Rab11a is an important regulator of TLR4 and TRAM transport to E. coli phagosomes thereby controlling IRF3 activation from this compartment.


Subject(s)
Phagosomes/metabolism , Toll-Like Receptor 4/physiology , rab GTP-Binding Proteins/physiology , Endocytosis , Escherichia coli/immunology , Humans , Interferon Regulatory Factor-3/metabolism , Interferon-beta/biosynthesis , Phagocytosis , Signal Transduction , Staphylococcus aureus/immunology
14.
J Leukoc Biol ; 84(1): 280-91, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18458151

ABSTRACT

Lipoteichoic acid (LTA) is a central inducer of inflammatory responses caused by Gram-positive bacteria, such as Staphylococcus aureus, via activation of TLR2. Localization of TLR2 in relation to its coreceptors may be important for function. This study explores the signaling, uptake, and trafficking pattern of LTA in relation to expression of TLR2 and its coreceptors CD36 and CD14 in human monocytes. We found TLR2 expressed in early endosomes, late endosomes/lysosomes, and in Rab-11-positive compartments but not in the Golgi apparatus or endoplasmic reticulum (ER). Rapid internalization of fluorescently labeled LTA was observed in human monocytes, colocalizing with markers for early and late endosomes, lysosomes, ER, and Golgi network. Blocking CD14 and CD36 with antibodies inhibited LTA binding and LTA-induced TNF release from monocytes, emphasizing an important role for both molecules as coreceptors for TLR2. Importantly, blocking CD36 did not affect TNF release induced by N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2R,S)-propyl]-(R)-cysteinyl-seryl-(lysyl)3-lysine or LPS. Expression of CD14 markedly enhanced LTA binding to the plasma membrane and also enhanced NF-kappaB activation. LTA internalization, but not NF-kappaB activation, was inhibited in Dynamin-I K44A dominant-negative transfectants, suggesting that LTA is internalized by receptor-mediated endocytosis but that internalization is not required for signaling. In fact, immobilizing LTA and thereby inhibiting internalization resulted in enhanced TNF release from monocytes. Our results suggest that LTA signaling preferentially occurs at the plasma membrane, is independent of internalization, and is facilitated by CD36 and CD14 as coreceptors for TLR2.


Subject(s)
CD36 Antigens/metabolism , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/metabolism , Signal Transduction , Teichoic Acids/metabolism , Toll-Like Receptor 2/metabolism , Animals , Biological Transport/drug effects , Cell Compartmentation/drug effects , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Dogs , Dynamin I/metabolism , Endocytosis/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endosomes/drug effects , Endosomes/metabolism , Humans , Lipopolysaccharides/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Teichoic Acids/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects , rab GTP-Binding Proteins/metabolism , trans-Golgi Network/drug effects , trans-Golgi Network/metabolism
15.
BMC Mol Biol ; 8: 106, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18021396

ABSTRACT

BACKGROUND: Novel, uncharacterised proteins represent a challenge in biochemistry and molecular biology. In this report we present an initial functional characterization of human kidney predominant protein, NCU-G1. RESULTS: NCU-G1 was found to be a highly conserved nuclear protein rich in proline with a molecular weight of approximately 44 kDa. It is localized on chromosome 1 and consists of 6 exons. Analysis of the amino acid sequence revealed no known transcription activation domains or DNA binding regions, however, four nuclear receptor boxes (LXXLL), and four SH3-interaction motives in addition to numerous potential phosphorylation sites were found. Two nuclear export signals were identified, but no nuclear localization signal. In man, NCU-G1 was found to be widely expressed at the mRNA level with especially high levels detected in prostate, liver and kidney. Electrophoretic mobility shift analysis showed specific binding of NCU-G1 to an oligonucleotide representing the footprint 1 element of the human cellular retinol-binding protein 1 gene promoter. NCU-G1 was found to activate transcription from this promoter and required presence of the footprint 1 element. In transiently transfected Drosophila Schneider S2 cells, we demonstrated that NCU-G1 functions as a co-activator for ligand-activated PPAR-alpha, resulting in an increased expression of a CAT reporter gene under control of the peroxisome proliferator-activated receptor-alpha responsive acyl-CoA oxidase promoter. CONCLUSION: We propose that NCU-G1 is a dual-function protein capable of functioning as a transcription factor as well as a nuclear receptor co-activator.


Subject(s)
Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Cell Nucleus/metabolism , Cloning, Molecular , Gene Expression Profiling , HeLa Cells , Humans , Ligands , Molecular Sequence Data , Nuclear Proteins/metabolism , Oligonucleotides/metabolism , Organ Specificity , PPAR alpha/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics , Retinol-Binding Proteins, Cellular/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription, Genetic , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...