Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cerebrospinal Fluid Res ; 7: 20, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21054845

ABSTRACT

BACKGROUND: The water channel protein aquaporin-4 (AQP4) is reported to be of possible major importance for accessory cerebrospinal fluid (CSF) circulation pathways. We hypothesized that changes in AQP4 expression in specific brain regions correspond to the severity and duration of hydrocephalus. METHODS: Hydrocephalus was induced in adult rats (~8 weeks) by intracisternal kaolin injection and evaluated after two days, one week and two weeks. Using magnetic resonance imaging (MRI) we quantified lateral ventricular volume, water diffusion and blood-brain barrier properties in hydrocephalic and control animals. The brains were analysed for AQP4 density by western blotting and localisation by immunohistochemistry. Double fluorescence labelling was used to study cell specific origin of AQP4. RESULTS: Lateral ventricular volume was significantly increased over control at all time points after induction and the periventricular apparent diffusion coefficient (ADC) value significantly increased after one and two weeks of hydrocephalus. Relative AQP4 density was significantly decreased in both cortex and periventricular region after two days and normalized after one week. After two weeks, periventricular AQP4 expression was significantly increased. Relative periventricular AQP4 density was significantly correlated to lateral ventricular volume. AQP4 immunohistochemical analysis demonstrated the morphological expression pattern of AQP4 in hydrocephalus in astrocytes and ventricular ependyma. AQP4 co-localized with astrocytic glial fibrillary acidic protein (GFAP) in glia limitans. In vascular structures, AQP4 co-localized to astroglia but not to microglia or endothelial cells. CONCLUSIONS: AQP4 levels are significantly altered in a time and region dependent manner in kaolin-induced hydrocephalus. The presented data suggest that AQP4 could play an important neurodefensive role, and may be a promising future pharmaceutical target in hydrocephalus and CSF disorders.

2.
Biofactors ; 35(4): 315-25, 2009.
Article in English | MEDLINE | ID: mdl-19655389

ABSTRACT

Metallothionein (MT)-I+II synthesis is induced in the central nervous system (CNS) in response to practically any pathogen or disorder, where it is increased mainly in reactive glia. MT-I+II are involved in host defence reactions and neuroprotection during neuropathological conditions, in which MT-I+II decrease inflammation and secondary tissue damage (oxidative stress, neurodegeneration, and apoptosis) and promote post-injury repair and regeneration (angiogenesis, neurogenesis, neuronal sprouting and tissue remodelling). Intracellularly the molecular MT-I+II actions involve metal ion control and scavenging of reactive oxygen species (ROS) leading to cellular redox control. By regulating metal ions, MT-I+II can control metal-containing transcription factors, zinc-finger proteins and p53. However, the neuroprotective functions of MT-I+II also involve an extracellular component. MT-I+II protects the neurons by signal transduction through the low-density lipoprotein family of receptors on the cell surface involving lipoprotein receptor-1 (LRP1) and megalin (LRP2). In this review we discuss the newest data on cerebral MT-I+II functions following brain injury and experimental autoimmune encephalomyelitis.


Subject(s)
Metallothionein/physiology , Neuroprotective Agents , Animals , Brain/drug effects , Brain/metabolism , Brain Injuries/physiopathology , Encephalitis/prevention & control , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Erythropoietin/physiology , Humans , Low Density Lipoprotein Receptor-Related Protein-2/physiology , Metallothionein/biosynthesis , Multiple Sclerosis/physiopathology , Neurodegenerative Diseases/drug therapy , Oxidative Stress/drug effects , Receptors, Cell Surface/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...