Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 962-965, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060033

ABSTRACT

The dorsal anterior cingulate cortex (dACC) is thought to be essential for normal adaptation of one's behavior to difficult decisions, errors, and reinforcement. Here we examine single neurons from the human dACC in the context of a statistical model, including a cognitive state that varies with changes in cognitive interference induced by a Stroop-like task. We then include this cognitive state in point process models of single unit activity and subject reaction time. These results suggest that consideration of a latent cognitive state can explain additional variance in neural and behavioral dynamics.


Subject(s)
Gyrus Cinguli , Cognition , Humans , Magnetic Resonance Imaging , Neurons , Reaction Time
2.
Stem Cells ; 35(8): 2001-2007, 2017 08.
Article in English | MEDLINE | ID: mdl-28600817

ABSTRACT

The balance between asymmetric and symmetric stem cell (SC) divisions is key to tissue homeostasis, and dysregulation of this balance has been shown in cancers. We hypothesized that the balance between asymmetric cell divisions (ACDs) and symmetric cell divisions (SCDs) would be dysregulated in the benign hyperproliferation of psoriasis. We found that, while SCDs were increased in squamous cell carcinoma (SCC) (human and murine), ACDs were increased in the benign hyperproliferation of psoriasis (human and murine). Furthermore, while sonic hedgehog (linked to human cancer) and pifithrinα (p53 inhibitor) promoted SCDs, interleukin (IL)-1α and amphiregulin (associated with benign epidermal hyperproliferation) promoted ACDs. While there was dysregulation of the ACD:SCD ratio, no change in SC frequency was detected in epidermis from psoriasis patients, or in human keratinocytes treated with IL-1α or amphiregulin. We investigated the mechanism whereby immune alterations of psoriasis result in ACDs. IL17 inhibitors are effective new therapies for psoriasis. We found that IL17A increased ACDs in human keratinocytes. Additionally, studies in the imiquimod-induced psoriasis-like mouse model revealed that ACDs in psoriasis are IL17A-dependent. In summary, our studies suggest an association between benign hyperproliferation and increased ACDs. This work begins to elucidate the mechanisms by which immune alteration can induce keratinocyte hyperproliferation. Altogether, this work affirms that a finely tuned balance of ACDs and SCDs is important and that manipulating this balance may constitute an effective treatment strategy for hyperproliferative diseases. Stem Cells 2017;35:2001-2007.


Subject(s)
Asymmetric Cell Division , Interleukin-17/metabolism , Psoriasis/metabolism , Psoriasis/pathology , Aminoquinolines/pharmacology , Aminoquinolines/therapeutic use , Animals , Asymmetric Cell Division/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Proliferation/drug effects , Homeostasis/drug effects , Humans , Imiquimod , Mice , Psoriasis/drug therapy
3.
Oncotarget ; 7(41): 66491-66511, 2016 Oct 11.
Article in English | MEDLINE | ID: mdl-27613843

ABSTRACT

In prior work we reported that advanced stage, drug-resistant pancreatic cancer cells (the SW1990 line) can be sensitized to the EGFR-targeting tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib by treatment with 1,3,4-O-Bu3ManNAc (Bioorg. Med. Chem. Lett. (2015) 25(6):1223-7). Here we provide mechanistic insights into how this compound inhibits EGFR activity and provides synergy with TKI drugs. First, we showed that the sialylation of the EGFR receptor was at most only modestly enhanced (by ~20 to 30%) compared to overall ~2-fold increase in cell surface levels of this sugar. Second, flux-driven sialylation did not alter EGFR dimerization as has been reported for cancer cell lines that experience increased sialylation due to spontaneous mutations. Instead, we present evidence that 1,3,4-O-Bu3ManNAc treatment weakens the galectin lattice, increases the internalization of EGFR, and shifts endosomal trafficking towards non-clathrin mediated (NCM) endocytosis. Finally, by evaluating downstream targets of EGFR signaling, we linked synergy between 1,3,4-O-Bu3ManNAc and existing TKI drugs to a shift from clathrin-coated endocytosis (which allows EGFR signaling to continue after internalization) towards NCM endocytosis, which targets internalized moieties for degradation and thereby rapidly diminishes signaling.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , ErbB Receptors/metabolism , Pancreatic Neoplasms/metabolism , Protein Transport/drug effects , Cell Line, Tumor , Endocytosis/drug effects , Humans , Protein Kinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL