Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798525

ABSTRACT

Resistance to amikacin and other major aminoglycosides is commonly due to enzymatic acetylation by aminoglycoside 6'- N -acetyltransferase type I enzyme, of which type Ib [AAC(6')-Ib] is the most widespread among Gram-negative pathogens. Finding enzymatic inhibitors could be an effective way to overcome resistance and extend the useful life of amikacin. Small molecules possess multiple properties that make them attractive compounds to be developed as drugs. Mixture-based combinatorial libraries and positional scanning strategy led to the identification of a chemical scaffold, pyrrolidine pentamine, that, when substituted with the appropriate functionalities at five locations (R1 - R5), inhibits AAC(6')-Ib-mediated inactivation of amikacin. Structure-activity relationship (SAR) studies showed that while truncations to the molecule result in loss of inhibitory activity, modifications of functionalities and stereochemistry have different effects on the inhibitory properties. In this study, we show that alterations at position R1 of the two most active compounds, 2700.001 and 2700.003 , reduced inhibition levels, demonstrating the essential nature not only of the presence of an S -phenyl moiety at this location but also the distance to the scaffold. On the other hand, modifications on the R3, R4, and R5 positions have varied effects, demonstrating the potential for optimization. A correlation analysis between molecular docking values (ΔG) and the dose required for two-fold potentiation of compounds described in this and the previous studies showed a significant correlation between ΔG values and inhibitory activity. Highlights: Amikacin resistance in Gram-negatives is mostly caused by the AAC(6')-Ib enzymeAAC(6')-Ib has been identified in most Gram-negative pathogensInhibitors of AAC(6')-Ib could be used to treat resistant infectionsCombinatorial libraries and positional scanning identified an inhibitorThe lead compound can be optimized by structure activity relationship studies.

2.
RSC Med Chem ; 14(9): 1591-1602, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37731693

ABSTRACT

Growing resistance to antimicrobial medicines is a critical health problem that must be urgently addressed. Adding to the increasing number of patients that succumb to infections, there are other consequences to the rise in resistance like the compromise of several medical procedures and dental work that are heavily dependent on infection prevention. Since their introduction in the clinics, aminoglycoside antibiotics have been a critical component of the armamentarium to treat infections. Still, the increase in resistance and their side effects led to a decline in their utilization. However, numerous current factors, like the urgent need for antimicrobials and their favorable properties, led to renewed interest in these drugs. While efforts to design new classes of aminoglycosides refractory to resistance mechanisms and with fewer toxic effects are starting to yield new promising molecules, extending the useful life of those already in use is essential. For this, numerous research projects are underway to counter resistance from different angles, like inhibition of expression or activity of resistance components. This review focuses on selected examples of one aspect of this quest, the design or identification of small molecule inhibitors of resistance caused by enzymatic modification of the aminoglycoside. These compounds could be developed as aminoglycoside adjuvants to overcome resistant infections.

3.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-37259383

ABSTRACT

Plazomicin is a recent U.S. Food and Drug Administration (FDA)-approved semisynthetic aminoglycoside. Its structure consists of a sisomicin scaffold modified by adding a 2(S)-hydroxy aminobutyryl group at the N1 position and a hydroxyethyl substituent at the 6' position. These substitutions produced a molecule refractory to most aminoglycoside-modifying enzymes. The main enzyme within this group that recognizes plazomicin as substrate is the aminoglycoside 2'-N-acetyltransferase type Ia [AAC(2')-Ia], which reduces the antibiotic's potency. Designing formulations that combine an antimicrobial with an inhibitor of resistance is a recognized strategy to extend the useful life of existing antibiotics. We have recently found that several metal ions inhibit the enzymatic inactivation of numerous aminoglycosides mediated by the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib]. In particular, Ag+, which also enhances the effect of aminoglycosides by other mechanisms, is very effective in interfering with AAC(6')-Ib-mediated resistance to amikacin. Here we report that silver acetate is a potent inhibitor of AAC(2')-Ia-mediated acetylation of plazomicin in vitro, and it reduces resistance levels of Escherichia coli carrying aac(2')-Ia. The resistance reversion assays produced equivalent results when the structural gene was expressed under the control of the natural or the blaTEM-1 promoters. The antibiotic effect of plazomicin in combination with silver was bactericidal, and the mix did not show significant toxicity to human embryonic kidney 293 (HEK293) cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...