Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 105(6): 1222-1236, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31761296

ABSTRACT

Muscle bulk in adult healthy humans is highly variable even after height, age, and sex are accounted for. Low muscle mass, due to fewer and/or smaller constituent muscle fibers, would exacerbate the impact of muscle loss occurring in aging or disease. Genetic variability substantially influences muscle mass differences, but causative genes remain largely unknown. In a genome-wide association study (GWAS) on appendicular lean mass (ALM) in a population of 85,750 middle-aged (aged 38-49 years) individuals from the UK Biobank (UKB), we found 182 loci associated with ALM (p < 5 × 10-8). We replicated associations for 78% of these loci (p < 5 × 10-8) with ALM in a population of 181,862 elderly (aged 60-74 years) individuals from UKB. We also conducted a GWAS on hindlimb skeletal muscle mass of 1,867 mice from an advanced intercross between two inbred strains (LG/J and SM/J); this GWAS identified 23 quantitative trait loci. Thirty-eight positional candidates distributed across five loci overlapped between the two species. In vitro studies of positional candidates confirmed CPNE1 and STC2 as modifiers of myogenesis. Collectively, these findings shed light on the genetics of muscle mass variability in humans and identify targets for the development of interventions for treatment of muscle loss. The overlapping results between humans and the mouse model GWAS point to shared genetic mechanisms across species.


Subject(s)
Body Composition/genetics , Calcium-Binding Proteins/genetics , Genome-Wide Association Study , Glycoproteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Muscle Development/genetics , Muscle, Skeletal/cytology , Thinness/genetics , Adult , Aged , Aging , Animals , Body Weight , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Mice , Middle Aged , Muscle, Skeletal/metabolism , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...