Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012502

ABSTRACT

Meier−Gorlin syndrome (MGS) is a rare genetic developmental disorder that causes primordial proportional dwarfism, microtia, the absence of or hypoplastic patellae and other skeletal anomalies. Skeletal symptoms overlapping with other syndromes make MGS difficult to diagnose clinically. We describe a 3-year-old boy with short stature, recurrent respiratory infections, short-rib dysplasia, tower head and facial dysmorphisms who was admitted to the Tomsk Genetic Clinic to verify a clinical diagnosis of Jeune syndrome. Clinical exome sequencing revealed two variants (compound heterozygosity) in the ORC6 gene: c.2T>C(p.Met1Thr) and c.449+5G>A. In silico analysis showed the pathogenicity of these two mutations and predicted a decrease in donor splicing site strength for c.449+5G>A. An in vitro minigene assay indicated that variant c.449+5G>A causes complete skipping of exon 4 in the ORC6 gene. The parents requested urgent prenatal testing for MGS for the next pregnancy, but it ended in a miscarriage. Our results may help prevent MGS misdiagnosis in the future. We also performed in silico and functional analyses of ORC6 mutations and developed a restriction fragment length polymorphism and haplotype-based short-tandem-repeat assay for prenatal genetic testing for MGS. These findings should elucidate MGS etiology and improve the quality of genetic counselling for affected families.


Subject(s)
Congenital Microtia , Dwarfism , Child, Preschool , Congenital Microtia/diagnosis , Congenital Microtia/genetics , Diagnostic Errors , Dwarfism/genetics , Genetic Testing , Growth Disorders , Humans , Male , Micrognathism , Mutation , Origin Recognition Complex/genetics , Patella/abnormalities
2.
Hum Mutat ; 42(8): 1053-1065, 2021 08.
Article in English | MEDLINE | ID: mdl-34174135

ABSTRACT

Congenital aniridia (AN) is a severe autosomal dominant panocular disorder associated with pathogenic variants in the PAX6 gene. Previously, we performed a molecular genetic study of a large cohort of Russian patients with AN and revealed four noncoding nucleotide variants in the PAX6 5'UTR. 14 additional PAX6-5'UTR variants were also reported in the literature, but the mechanism of their pathogenicity remained unclear. In the present study, we experimentally analyze five patient-derived PAX6 5'UTR-variants: four variants that we identified in Russian patients (c.-128-2delA, c.-125dupG, c.-122dupG, c.-118_-117del) and one previously reported (c.-52+5G>C). We show that the variants lead to a decrease in the protein translation efficiency, while mRNA expression level is not significantly reduced. Two of these variants also affect splicing. Furthermore, we predict and experimentally validate the presence of an evolutionarily conserved small uORF in the PAX6 5'UTR. All studied variants lead to the frameshift of the uORF, resulting in its extension. This extended out-of-frame uORF overlaps with the downstream CDS and thereby reduces its translation efficiency. We conclude that the uORF frameshift may be the main mechanism of pathogenicity for at least 15 out of 18 known PAX6 5'UTR variants. Moreover, we predict additional uORFs in the PAX6 5'UTR.


Subject(s)
Aniridia , 5' Untranslated Regions , Aniridia/genetics , Aniridia/pathology , Frameshift Mutation , Humans , Inheritance Patterns , PAX6 Transcription Factor/genetics , RNA, Messenger/genetics
3.
J Invest Dermatol ; 136(6): 1097-1105, 2016 06.
Article in English | MEDLINE | ID: mdl-26902920

ABSTRACT

Hypotrichosis is an abnormal condition characterized by decreased hair density and various defects in hair structure and growth patterns. In particular, in woolly hair, hypotrichosis is characterized by a tightly curled structure and abnormal growth. In this study, we present a detailed comparative examination of individuals affected by autosomal-recessive hypotrichosis (ARH), which distinguishes two types of ARH. Earlier, we demonstrated that exon 4 deletion in the lipase H gene caused an ARH (hypotrichosis 7; MIM: 604379) in populations of the Volga-Ural region of Russia. Screening for this mutation in all affected individuals revealed its presence only in the group with the hypotrichosis 7 phenotype. Other patients formed a separate group of woolly hair-associated ARH, with a homozygous missense mutation c.712G>T (p.Val238Leu) in a highly conserved position of type I keratin KRT25 (K25). Haplotype analysis indicated a founder effect. An expression study in the HaCaT cell line demonstrated a deleterious effect of the p.Val238Leu mutation on the formation of keratin intermediate filaments. Hence, we have identified a previously unreported missense mutation in the KRT25 gene causing ARH with woolly hair.


Subject(s)
Alopecia/congenital , Genetic Predisposition to Disease/epidemiology , Keratins, Hair-Specific/genetics , Mutation, Missense , Alopecia/ethnology , Alopecia/genetics , DNA Mutational Analysis , Exons/genetics , Female , Genes, Recessive , Hair/abnormalities , Hair Diseases , Hair Follicle/pathology , Haplotypes/genetics , Humans , Male , Pedigree , Phenotype , Russia , Sampling Studies , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...