Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Atmos Ocean Technol ; 38(2): 293-311, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-34054206

ABSTRACT

This study focuses on the ability of the Global Precipitation Measurement (GPM) passive microwave sensors to detect and provide quantitative precipitation estimates (QPE) for extreme lake-effect snowfall events over the U.S. lower Great Lakes region. GPM Microwave Imager (GMI) high-frequency channels can clearly detect intense shallow convective snowfall events. However, GMI Goddard Profiling (GPROF) QPE retrievals produce inconsistent results when compared with the Multi-Radar Multi-Sensor (MRMS) ground-based radar reference dataset. While GPROF retrievals adequately capture intense snowfall rates and spatial patterns of one event, GPROF systematically underestimates intense snowfall rates in another event. Furthermore, GPROF produces abundant light snowfall rates that do not accord with MRMS observations. Ad hoc precipitation-rate thresholds are suggested to partially mitigate GPROF's overproduction of light snowfall rates. The sensitivity and retrieval efficiency of GPROF to key parameters (2-m temperature, total precipitable water, and background surface type) used to constrain the GPROF a priori retrieval database are investigated. Results demonstrate that typical lake-effect snow environmental and surface conditions, especially coastal surfaces, are underpopulated in the database and adversely affect GPROF retrievals. For the two presented case studies, using a snow-cover a priori database in the locations originally deemed as coastline improves retrieval. This study suggests that it is particularly important to have more accurate GPROF surface classifications and better representativeness of the a priori databases to improve intense lake-effect snow detection and retrieval performance.

2.
J Appl Meteorol Climatol ; 58(7): 1429-1448, 2019 Jul.
Article in English | MEDLINE | ID: mdl-32655334

ABSTRACT

Retrievals of falling snow from space-based observations represent key inputs for understanding and linking Earth's atmospheric, hydrological, and energy cycles. This work quantifies and investigates causes of differences among the first stable falling snow retrieval products from the Global precipitation Measurement (GPM) Core Observatory satellite and CloudSat's Cloud Profiling Radar (CPR) falling snow product. An important part of this analysis details the challenges associated with comparing the various GPM and CloudSat snow estimates arising from different snow-rain classification methods, orbits, resolutions, sampling, instrument specifications, and algorithm assumptions. After equalizing snow-rain classification methodologies and limiting latitudinal extent, CPR observes nearly 10 (3) times the occurrence (accumulation) of falling snow as GPM's Dual-Frequency Precipitation Radar (DPR). The occurrence disparity is substantially reduced if CloudSat pixels are averaged to simulate DPR radar pixels and CPR observations are truncated below the 8-dBZ reflectivity threshold. However, even though the truncated CPR- and DPR-based data have similar falling snow occurrences, average snowfall rate from the truncated CPR record remains significantly higher (43%) than the DPR, indicating that retrieval assumptions (microphysics and snow scattering properties) are quite different. Diagnostic reflectivity (Z)-snow rate (S) relationships were therefore developed at Ku and W band using the same snow scattering properties and particle size distributions in a final effort to minimize algorithm differences. CPR-DPR snowfall amount differences were reduced to ~16% after adopting this diagnostic Z-S approach.

3.
Q J R Meteorol Soc ; 144(51): 27-48, 2018 Nov.
Article in English | MEDLINE | ID: mdl-31213729

ABSTRACT

Precipitation represents a life-critical energy and hydrologic exchange between the Earth's atmosphere and its surface. As such, knowledge of where, when, and how much rain and snow falls is essential for scientific research and societal applications. Building on the 17-year success of the Tropical Rainfall Measurement Mission (TRMM), the Global Precipitation Measurement (GPM) Core Observatory (GPM-CO) is the first U.S. National Aeronautical and Space Administration (NASA) satellite mission specifically designed with sensors to observe the structure and intensities of both rain and falling snow. The GPM-CO has proved to be a worthy successor to TRMM, extending and improving high-quality active and passive microwave observations across all times of day. The GPM-CO launched in early 2014, is a joint mission between NASA and the Japanese Aerospace Exploration Agency (JAXA), with sensors that include the NASA-provided GPM Microwave Imager and the JAXA-provided Dual-frequency Precipitation Radar. These sensors were devised with high accuracy standards enabling them to be used as a reference for inter-calibrating a constellation of partner satellite data. These intercalibrated partner satellite retrievals are used with infrared data to produce merged precipitation estimates at temporal scales of 30 minutes and spatial scales of 0.1° × 0.1°. Precipitation estimates from the GPM-CO and partner constellation satellites, provided in near real time and later reprocessed with all ancillary data, are an indispensable source of precipitation data for operational and scientific users. Advances have been made using GPM data, primarily in improving sensor calibration, retrieval algorithms, and ground validation measurements, and used to further our understanding of the characteristics of liquid and frozen precipitation and the science of water and hydrological cycles for climate/weather forecasting. These advances have extended to societal benefits related to water resources, operational numerical weather prediction, hurricane monitoring, prediction, and disaster response, extremes, and disease.

4.
Bull Am Meteorol Soc ; 98(1): 69-78, 2017 Jan.
Article in English | MEDLINE | ID: mdl-30008481

ABSTRACT

The measurement of global precipitation, both rainfall and snowfall, is critical to a wide range of users and applications. Rain gauges are indispensable in the measurement of precipitation, remaining the de facto standard for precipitation information across the Earth's surface for hydro-meteorological purposes. However, their distribution across the globe is limited: over land their distribution and density is variable, while over oceans very few gauges exist and where measurements are made, they may not adequately reflect the rainfall amounts of the broader area. Critically, the number of gauges available, or appropriate for a particular study, varies greatly across the Earth due to temporal sampling resolutions, periods of operation, data latency and data access. Numbers of gauges range from a few thousand available in near real time, to about a hundred thousand for all 'official' gauges, and to possibly hundreds of thousands if all possible gauges are included. Gauges routinely used in the generation of global precipitation products cover an equivalent area of between about 250 m2 and 3,000 m2. For comparison, the center circle of a soccer pitch or tennis court is about 260 m2. Although each gauge should represent more than just the gauge orifice, auto-correlation distances of precipitation vary greatly with regime and the integration period. Assuming each Global Precipitation Climatology Centre (GPCC) -available gauge is independent and represents a surrounding area of 5 km radius, this represents only about 1% of the Earth's surface. The situation is further confounded for snowfall which has a greater measurement uncertainty.

SELECTION OF CITATIONS
SEARCH DETAIL
...