Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 1915, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203765

ABSTRACT

Eukaryotic organisms are continuously exposed to bacteriophages, which are efficient gene transfer agents in bacteria. However, bacteriophages are considered not to pass the eukaryotic cell membrane and enter nonphagocytic cells. Here we report the binding and penetration of Escherichia coli PK1A2 bacteriophage into live eukaryotic neuroblastoma cells in vitro. The phage interacts with cell surface polysialic acid, which shares structural similarity with the bacterial phage receptor. Using fluorescence and electron microscopy, we show that phages are internalized via the endolysosomal route and persist inside the human cells up to one day without affecting cell viability. Phage capsid integrity is lost in lysosomes, and the phage DNA is eventually degraded. We did not detect the entry of phage DNA into the nucleus; however, we speculate that this might occur as a rare event, and propose that this potential mechanism could explain prokaryote-eukaryote gene flow.


Subject(s)
Bacteriophages/metabolism , Endosomes/metabolism , Escherichia coli/virology , Eukaryotic Cells/metabolism , Lysosomes/metabolism , Neuroblastoma/metabolism , Sialic Acids/metabolism , Bacteriophages/ultrastructure , Capsid/metabolism , Capsid/ultrastructure , Cell Line, Tumor , DNA, Viral/metabolism , Endocytosis , Endosomes/ultrastructure , Eukaryotic Cells/ultrastructure , Gene Flow , Humans , Lysosomes/ultrastructure , Microscopy, Electron , Microscopy, Fluorescence , Neuroblastoma/ultrastructure
2.
Stem Cell Res Ther ; 7(1): 113, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27528376

ABSTRACT

BACKGROUND: In order to develop novel clinical applications and to gain insights into possible therapeutic mechanisms, detailed molecular characterization of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) is needed. Neural cell adhesion molecule (NCAM, CD56) is a transmembrane glycoprotein modulating cell-cell and cell-matrix interactions. An additional post-translational modification of NCAM is the α2,8-linked polysialic acid (polySia). Because of its background, NCAM is often considered a marker of neural lineage commitment. Generally, hBM-MSCs are considered to be devoid of NCAM expression, but more rigorous characterization is needed. METHODS: We have studied NCAM and polySia expression in five hBM-MSC lines at mRNA and protein levels. Cell surface localization was confirmed by immunofluorescence staining and expression frequency in the donor-specific lines by flow cytometry. For the detection of poorly immunogenic polySia, a fluorochrome-tagged catalytically defective enzyme was employed. RESULTS: All five known NCAM isoforms are expressed in these cells at mRNA level and the three main isoforms are present at protein level. Both polysialyltransferases, generally responsible for NCAM polysialylation, are expressed at mRNA level, but only very few cells express polySia at the cell surface. CONCLUSIONS: Our results underline the need for a careful control of methods and conditions in the characterization of MSCs. This study shows that, against the generally held view, clinical-grade hBM-MSCs do express NCAM. In contrast, although both polysialyltransferase genes are transcribed in these cells, very few express polySia at the cell surface. NCAM and polySia represent new candidate molecules for influencing MSC interactions.


Subject(s)
Bone Marrow/metabolism , CD56 Antigen/metabolism , Mesenchymal Stem Cells/metabolism , Neural Cell Adhesion Molecules/metabolism , Sialic Acids/metabolism , Biomarkers/metabolism , Cell Line, Tumor , Cell Lineage/physiology , Humans , Neurons/metabolism , RNA, Messenger/metabolism , Sialyltransferases/metabolism
3.
Cytotechnology ; 67(5): 905-19, 2015 Oct.
Article in English | MEDLINE | ID: mdl-24718835

ABSTRACT

Current cell-based cartilage therapies relay on articular cartilage-derived autologous chondrocytes as a cell source, which possesses disadvantages, such as, donor site morbidity and dedifferentiation of chondrocytes during in vitro expansion. Due to these and other limitations, novel cell sources and production strategies are needed. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are a fascinating alternative, but they are not spontaneously capable of producing hyaline cartilage-like repair tissue in vivo. In vitro pre-differentiation of BM-MSCs could be used to produce chondrocytes for clinical applications. However, clinically compatible defined and xeno-free differentiation protocol is lacking. Hence, this study aimed to develop such chondrogenic differentiation medium for human BM-MSCs. We assessed the feasibility of the medium using three human BM-MSCs donors and validated the method by comparing BM-MSCs to three other cell types holding potential for articular cartilage repair. The effectiveness of the method was compared to conventional serum-free and commercially available chondrogenic differentiation media. The results show that the defined xeno-free differentiation medium is at least as efficient as conventionally used serum-free chondrogenic medium and performed significantly better on all cell types tested compared to the commercially available chondrogenic medium.

SELECTION OF CITATIONS
SEARCH DETAIL
...