Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(5): 4029-4038, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38224174

ABSTRACT

We investigated the structure of pure and Sc-doped synthetic diopside (a monoclinic single-chain silicate nominally CaMgSi2O6); in Sc-doped diopside, Sc3+ substitutes Mg2+ in the structure and, to achieve charge balance, vacancies form at the expense of Ca2+. We compared the structure obtained from ab initio modelling techniques at the density functional theory (DFT) level with the structure solved by employing single crystal X-ray diffraction. Furthermore, we compared IR and Raman spectroscopy experiments with vibrational density of states (VDOS) calculated from the Fourier transform of the velocity autocorrelation function obtained using ab initio (DFT) molecular dynamics simulations. In this framework, we developed a computational tool to assign the vibrational mode associated with a specific frequency. This method consists of projecting velocities along a specific set of internal coordinates such as stretching or bending, in cases involving defects or vacancies, to calculate a partial VDOS (pVDOS) that takes into account only the vibrations associated with selected internal modes, aiding the interpretation of the total VDOS and the experimental spectra in a relevant way. The computed data were validated with the experiments and we observed that doping the diopside structure with Sc produces peak broadening and the occurrence of new peaks in the Raman spectra and that site vacancies are associated with the nearby Sc site. The present work constitutes an interesting starting point to exploit the calculated VDOS/pVDOS to characterize experimental vibrational spectra of complex systems containing local vacancies, substitutions or defects as the Sc-doped diopside.

2.
J Hazard Mater ; 457: 131754, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37276694

ABSTRACT

The environmental impact of natural occurrences of asbestos (NOA) and asbestos-like minerals is a growing concern for environmental protection agencies. The lack of shared sampling and analytical procedures hinders effectively addressing this issue. To investigate the hazard posed by NOA, a multidisciplinary approach that encompasses geology, mineralogy, chemistry, and toxicology is proposed and demonstrated here, on a natural occurrence of antigorite from a site in Varenna Valley, Italy. Antigorite is, together with chrysotile asbestos, one of the serpentine polymorphs and its toxicological profile is still under debate. We described field and petrographic analyses required to sample a vein and to evaluate the NOA-hazard. A combination of standardized mechanical stress and automated morphometrical analyses on milled samples allowed to quantify the asbestos-like morphology. The low congruent solubility in acidic simulated body fluid, together with the toxicity-relevant surface reactivity due to iron speciation, signalled a bio-activity similar or even greater to that of chrysotile. Structural information on the genetic mechanism of antigorite asbestos-like fibres in nature were provided. Overall, the NOA site was reported to contain veins of asbestos-like antigorite and should be regarded as source of potentially toxic fibres during hazard assessment procedure.

3.
Miner Depos ; 56(1): 31-44, 2021.
Article in English | MEDLINE | ID: mdl-33518810

ABSTRACT

The Bushveld Igneous Complex (BIC) is known for its laterally extensive platinum group element-bearing layers, the most famous being the Merensky Reef and the UG-2 chromitite in the eastern and western limbs of the complex. In the northern limb, the Platreef mineralization and a thick chromitite seam below it (referred to as the "UG-2 equivalent" or UG-2E) have been proposed to be the stratigraphic equivalents of the Merensky Reef and the UG-2, respectively. In this study, we compare a suite of UG-2E samples from the Turfspruit project with a UG-2 reference suite from the western limb using petrography, electron probe microanalysis, laser ablation-inductively coupled plasma-mass spectrometry, and Mössbauer spectroscopy. The results show that (a) in Mg# vs. Cr# diagrams, UG-2E chromites have a distinct compositional field; however, when samples of similar chromite modal abundance (≥ 80%) are used, the UG-2E chromites overlap the field that characterizes UG-2 chromites; (b) the UG-2E is more variable in chromite modal abundance than the UG-2; and (c) variations in Mg# and Fe3+/ΣFe in the UG-2E indicate contamination of the magma by metasedimentary rocks of the Duitschland Formation (Transvaal Supergroup) during emplacement, followed by partial re-equilibration of chromite grains with a trapped melt. Thus, we conclude that for chromite modes higher than 80%, the chromite composition retains enough information to allow correlation and that the UG-2E in the northern limb is very likely the UG-2 chromitite.

4.
Chem Commun (Camb) ; 55(80): 12000-12003, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31524904

ABSTRACT

In this study, the bandgap energy of the multiferroic oxide Mn3TeO6 is successfully reduced by ∼39% from 3.15 eV to 1.86 eV, accompanied by a phase transition at high pressures. The high-pressure phase with smaller bandgap energy is quenchable to ambient conditions and represents a promising light-harvesting material for photovoltaic applications.

5.
PLoS One ; 13(8): e0200351, 2018.
Article in English | MEDLINE | ID: mdl-30089115

ABSTRACT

Garnets from disparate geographical environments and origins such as oxidized soils and river sediments in Thailand host intricate systems of microsized tunnels that significantly decrease the quality and value of the garnets as gems. The origin of such tunneling has previously been attributed to abiotic processes. Here we present physical and chemical remains of endolithic microorganisms within the tunnels and discuss a probable biological origin of the tunnels. Extensive investigations with synchrotron-radiation X-ray tomographic microscopy (SRXTM) reveal morphological indications of biogenicity that further support a euendolithic interpretation. We suggest that the production of the tunnels was initiated by a combination of abiotic and biological processes, and that at later stages biological processes came to dominate. In environments such as river sediments and oxidized soils garnets are among the few remaining sources of bio-available Fe2+, thus it is likely that microbially mediated boring of the garnets has trophic reasons. Whatever the reason for garnet boring, the tunnel system represents a new endolithic habitat in a hard silicate mineral otherwise known to be resistant to abrasion and chemical attack.


Subject(s)
Geologic Sediments/chemistry , Minerals/chemistry , Rivers/chemistry , Silicates/chemistry , Soil/chemistry , Ferrous Compounds/chemistry , Fossils , Geologic Sediments/microbiology , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Thailand
6.
J Radioanal Nucl Chem ; 317(1): 253-259, 2018.
Article in English | MEDLINE | ID: mdl-29950747

ABSTRACT

Proton-induced reaction (p,α) is one type of nuclear reaction analysis (NRA) suitable especially for light element quantification. In the case of lithium quantification presented in this work, accelerated protons with an energy about of 850 keV were used to induce the 7Li(p,α)4He reaction in standard reference and geological samples such as tourmaline and other Li-minerals. It is shown that this technique for lithium quantification allowed for measurement of concentrations down below one ppm. The possibility to relate the lithium content with the boron content in a single analysis was also demonstrated using tourmaline samples, both in absolute concentration and in lateral distribution. In addition, Particle induced X-ray emission (PIXE) was utilized as a complementary IBA technique for simultaneous mapping of elements heavier than sodium.

7.
Sci Rep ; 7(1): 14708, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29089625

ABSTRACT

The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO2-rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of RuBisCO Form II with a highly prevalent Zetaproteobacteria 16S rRNA gene density infers that iron-oxidizing bacteria contribute significantly to the sediment CBB cycle gene content. Three clusters form from different microbial guilds, each one encompassing one gene involved in CO2 fixation, aside from sulfate reduction. Our study suggests that the microbially mediated CBB cycle drives carbon fixation in the Spathi Bay sediments that are characterized by diffuse hydrothermal activity, high CO2, As emissions and chemically reduced fluids. This study highlights the breadth of conditions influencing the biogeochemistry in shallow CO2-rich hydrothermal systems and the importance of coupling highly specific process indicators to elucidate the complexity of carbon cycling in these ecosystems.

8.
J Radioanal Nucl Chem ; 311(1): 355-364, 2017.
Article in English | MEDLINE | ID: mdl-28111484

ABSTRACT

Ion beam analysis has for decades been used as a tool for geochemical analysis of trace elements using both X-rays (particle induced X-ray emission) and nuclear reaction analysis. With the geoanalytical setup at the Lund Ion Beam Analysis Facility, the boron content in geological samples with a spatial resolution of 1 µm is determined through nuclear reaction analysis. In the newly upgraded setup, a single detector has been replaced by a double sided silicon strip detector with 2048 segments. After optimization, boron content in geological samples as low as 1 µg g-1 can be measured.

9.
PLoS One ; 10(10): e0140106, 2015.
Article in English | MEDLINE | ID: mdl-26488482

ABSTRACT

We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites-remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Microbial Consortia , Silicates/analysis , Zeolites/analysis , Fossils , Fungi/ultrastructure , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Hyphae/metabolism , Hyphae/ultrastructure , Metals/metabolism , Microscopy/methods , Microscopy, Electron, Scanning , Minerals/metabolism , Seawater/chemistry , Seawater/microbiology , Spectrum Analysis, Raman , Synchrotrons , Tomography, X-Ray/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...