Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 46(15): e2300210, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269205

ABSTRACT

Dried blood spot samples are simple to prepare and transport, enabling safe and accessible diagnostics, both locally and globally. We review dried blood spot samples for clinical analysis, focusing on liquid chromatography-mass spectrometry as a versatile measurement tool for these samples. Dried blood spot samples can provide information for, for example, metabolomics, xenobiotic analysis, and proteomics. Targeted analyses of small molecules are the main application of dried blood spot samples and liquid chromatography-mass spectrometry, but emerging applications include untargeted metabolomics and proteomics. Applications are highly varied, including analyses related to newborn screening, diagnostics and monitoring of disease progression and treatment effects of virtually any disease, as well as studies into the physiology and effects of diet, exercise, xenobiotics, and doping. A range of dried blood spot products and methods are available, and applied liquid chromatography-mass spectrometry instrumentation is varied with regard to liquid chromatography column formats and selectivity. In addition, novel approaches such as on-paper sample preparation (e.g., selective trapping of analytes with paper-immobilized antibodies) are described. We focus on research papers published in the last 5 years.


Subject(s)
Dried Blood Spot Testing , Tandem Mass Spectrometry , Infant, Newborn , Humans , Tandem Mass Spectrometry/methods , Dried Blood Spot Testing/methods , Chemistry, Clinical , Chromatography, Liquid/methods , Specimen Handling
2.
Anal Sci Adv ; 4(7-8): 255-266, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38716308

ABSTRACT

A common challenge when studying rare diseases or medical conditions is the limited number of patients, usually resulting in long inclusion periods as well as unequal sampling and storage conditions. The main purpose of this study was to demonstrate the challenges when comparing samples subject to different preanalytical conditions. We performed a global (commonly referred to as "untargeted") liquid chromatography-high resolution mass spectrometry metabolomics analysis of blood samples from cases of sudden infant death syndrome and controls stored as dried blood spots on a chemical-free filter card for 15 years at room temperature compared with the same blood samples stored as whole blood at -80°C before preparing new dried blood spots using a chemically treated filter card. Principal component analysis plots distinctly separated the samples based on the type of filter card and storage, but not sudden infant death syndrome versus controls. Note that, 1263 out of 5161 and 642 out of 1587 metabolite features detected in positive and negative ionization mode, respectively, were found to have significant 2-fold changes in amounts corresponding to different preanalytical conditions. The study demonstrates that the dried blood spot metabolome is largely affected by preanalytical factors. This emphasizes the importance of thoroughly addressing preanalytical factors during study design and interpretation, enabling identification of real, biological differences between sample groups whilst preventing other factors or random variation to be falsely interpreted as positive results.

3.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555701

ABSTRACT

Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive developmental and epileptic encephalopathy caused by pathogenic variants in the ALDH7A1 gene (PDE-ALDH7A1), which mainly has its onset in neonates and infants. Early diagnosis and treatment are crucial to prevent severe neurological sequelae or death. Sensitive, specific, and stable biomarkers for diagnostic evaluations and follow-up examinations are essential to optimize outcomes. However, most of the known biomarkers for PDE lack these criteria. Additionally, there is little discussion regarding the interdependence of biomarkers in the PDE-ALDH7A1 metabolite profile. Therefore, the aim of this study was to understand the underlying mechanisms in PDE-ALDH7A1 and to discover new biomarkers in the plasma of patients using global metabolomics. Plasma samples from 9 patients with genetically confirmed PDE-ALDH7A1 and 22 carefully selected control individuals were analyzed by ultra high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Two novel and reliable pyridoxine-independent diagnostic markers, 6-hydroxy-2-aminocaproic acid (HACA) and an isomer of C9H11NO4, were identified. Furthermore, a possible reaction mechanism is proposed for HACA. This study demonstrates the capability of global metabolomics in disease screening to detect established and novel biomarkers.


Subject(s)
Aldehyde Dehydrogenase , Epilepsy , Infant , Infant, Newborn , Humans , Aldehyde Dehydrogenase/genetics , Epilepsy/diagnosis , Epilepsy/genetics , Pyridoxine , Biomarkers
4.
J Proteome Res ; 20(8): 4010-4021, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34296888

ABSTRACT

Dried blood spot (DBS) metabolite analysis is a central tool for the clinic, e.g., newborn screening. Instead of applying multiple analytical methods, a single liquid chromatography-mass spectrometry (LC-MS) method was developed for metabolites spanning from highly polar glucose to hydrophobic long-chain acylcarnitines. For liquid chromatography, a diphenyl column and a multi-linear solvent gradient operated at elevated flow rates allowed for an even-spread resolution of diverse metabolites. Injecting moderate volumes of DBS organic extracts directly, in contrast to evaporation and reconstitution, provided substantial increases in analyte recovery. Q Exactive MS settings were also tailored for sensitivity increases, and the method allowed for analyte retention time and peak area repeatabilities of 0.1-0.4 and 2-10%, respectively, for a wide polarity range of metabolites (log P -4.4 to 8.8). The method's performance was suited for both untargeted analysis and targeted approaches evaluated in clinically relevant experiments.


Subject(s)
Metabolome , Metabolomics , Chromatography, Liquid , Dried Blood Spot Testing , Humans , Infant, Newborn , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...