Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645906

ABSTRACT

Nitro fatty acids (NO 2 -FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO 2 -FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to ( E ) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [( E ) 8-nitro- nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl ( E )nitro-oct-4-enedioate (CP- 23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.

2.
Redox Biol ; 66: 102856, 2023 10.
Article in English | MEDLINE | ID: mdl-37633047

ABSTRACT

Nitro fatty acids (NO2-FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO2-FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to (E) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [(E) 8-nitro-nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl (E)nitro-oct-4-enedioate (CP-23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Mice , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Nitrogen Dioxide , Homologous Recombination , Apoptosis , Alkenes , DNA , Rad51 Recombinase
3.
Redox Biol ; 56: 102443, 2022 10.
Article in English | MEDLINE | ID: mdl-36058112

ABSTRACT

RAD51 is a critical recombinase that functions in concert with auxiliary mediator proteins to direct the homologous recombination (HR) DNA repair pathway. We show that Cys319 RAD51 possesses nucleophilic characteristics and is important for irradiation-induced RAD51 foci formation and resistance to inhibitors of poly (ADP-ribose) polymerase (PARP). We have previously identified that cysteine (Cys) oxidation of proteins can be important for activity and modulated via binding to peroxiredoxin 1 (PRDX1). PRDX1 reduces peroxides and coordinates the signaling actions of protein binding partners. Loss of PRDX1 inhibits irradiation-induced RAD51 foci formation and represses HR DNA repair. PRDX1-deficient human breast cancer cells and mouse embryonic fibroblasts display disrupted RAD51 foci formation and decreased HR, resulting in increased DNA damage and sensitization of cells to irradiation. Following irradiation cells deficient in PRDX1 had increased incorporation of the sulfenylation probe DAz-2 in RAD51 Cys319, a functionally-significant, thiol that PRDX1 is critical for maintaining in a reduced state. Molecular dynamics (MD) simulations of dT-DNA bound to a non-oxidized RAD51 protein showed tight binding throughout the simulation, while dT-DNA dissociated from an oxidized Cys319 RAD51 filament. These novel data establish RAD51 Cys319 as a functionally-significant site for the redox regulation of HR and cellular responses to IR.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Rad51 Recombinase , Adenosine Diphosphate/metabolism , Animals , Cysteine/metabolism , DNA/metabolism , DNA Repair , Fibroblasts/metabolism , Homologous Recombination , Humans , Mice , Oxidation-Reduction , Peroxides , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Ribose
4.
Br J Cancer ; 125(8): 1146-1157, 2021 10.
Article in English | MEDLINE | ID: mdl-34389806

ABSTRACT

BACKGROUND: Peroxiredoxin 1 (PRDX1) belongs to an abundant family of peroxidases whose role in cancer is still unresolved. While mouse knockout studies demonstrate a tumour suppressive role for PRDX1, in cancer cell xenografts, results denote PRDX1 as a drug target. Probably, this phenotypic discrepancy stems from distinct roles of PRDX1 in certain cell types or stages of tumour progression. METHODS: We demonstrate an important cell-autonomous function for PRDX1 utilising a syngeneic mouse model (BALB/c) and mammary fibroblasts (MFs) obtained from it. RESULTS: Loss of PRDX1 in vivo promotes collagen remodelling known to promote breast cancer progression. PRDX1 inactivation in MFs occurs via SRC-induced phosphorylation of PRDX1 TYR194 and not through the expected direct oxidation of CYS52 in PRDX1 by ROS. TYR194-phosphorylated PRDX1 fails to bind to lysyl oxidases (LOX) and leads to the accumulation of extracellular LOX proteins which supports enhanced collagen remodelling associated with breast cancer progression. CONCLUSIONS: This study reveals a cell type-specific tumour suppressive role for PRDX1 that is supported by survival analyses, depending on PRDX1 protein levels in breast cancer cohorts.


Subject(s)
Breast Neoplasms/pathology , Extracellular Matrix/metabolism , Peroxiredoxins/metabolism , Protein-Lysine 6-Oxidase/metabolism , Tyrosine/metabolism , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Collagen/metabolism , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Mice , Phosphorylation , Prognosis , Survival Analysis
5.
Mol Cancer Ther ; 20(6): 1210-1219, 2021 06.
Article in English | MEDLINE | ID: mdl-33785649

ABSTRACT

Disease models, including in vitro cell culture and animal models, have contributed significantly to developing diagnostics and treatments over the past several decades. The successes of traditional drug screening methods were generally hampered by not adequately mimicking critical in vivo features, such as a 3D microenvironment and dynamic drug diffusion through the extracellular matrix (ECM). To address these issues, we developed a 3D dynamic drug delivery system for cancer drug screening that mimicks drug dissemination through the tumor vasculature and the ECM by creating collagen-embedded microfluidic channels. Using this novel 3D ECM microsystem, we compared viability of tumor pieces with traditionally used 2D methods in response to three different drug combinations. Drug diffusion profiles were evaluated by simulation methods and tested in the 3D ECM microsystem and a 2D 96-well setup. Compared with the 2D control, the 3D ECM microsystem produced reliable data on viability, drug ratios, and combination indeces. This novel approach enables higher throughput and sets the stage for future applications utilizing drug sensitivity predicting algorithms based on dynamic diffusion profiles requiring only minimal patient tissue. Our findings moved drug sensitivity screening closer to clinical implications with a focus on testing combinatorial drug effects, an option often limited by the amount of available patient tissues.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Evaluation, Preclinical/methods , Imaging, Three-Dimensional/methods , Lab-On-A-Chip Devices/standards , Animals , Disease Models, Animal , Extracellular Matrix , Female , Humans , Mice , Mice, Nude
6.
Nutrients ; 12(8)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751496

ABSTRACT

Elevated levels of estrogen are a risk factor for breast cancer. In addition to inducing DNA damage, estrogens can enhance cell proliferation as well as modulate fatty acid metabolism that collectively contributes to mammary tumorigenesis. Sulforaphane (SFN) is an isothiocyanate derived from broccoli that is currently under evaluation in multiple clinical trials for prevention of several diseases, including cancer. Previous studies showed that SFN suppressed DNA damage and lipogenesis pathways. Therefore, we hypothesized that administering SFN to animals that are co-exposed to 17ß-estradiol (E2) would prevent mammary tumor formation. In our study, 4-6 week old female August Copenhagen Irish rats were implanted with slow-release E2 pellets (3 mg x 3 times) and gavaged 3x/week with either vehicle or 100 µmol/kg SFN for 56 weeks. SFN-treated rats were protected significantly against mammary tumor formation compared to vehicle controls. Mammary glands of SFN-treated rats showed decreased DNA damage while serum free fatty acids and triglyceride species were 1.5 to 2-fold lower in SFN-treated rats. Further characterization also showed that SFN diminished expression of enzymes involved in mammary gland lipogenesis. This study indicated that SFN protects against breast cancer development through multiple potential mechanisms in a clinically relevant hormonal carcinogenesis model.


Subject(s)
Anticarcinogenic Agents/pharmacology , Isothiocyanates/pharmacology , Mammary Neoplasms, Animal/prevention & control , Mammary Neoplasms, Experimental/prevention & control , Animals , Cell Proliferation/drug effects , DNA Damage/drug effects , Estradiol , Fatty Acids/blood , Female , Lipogenesis/drug effects , Mammary Neoplasms, Animal/chemically induced , Mammary Neoplasms, Experimental/chemically induced , Rats , Sulfoxides , Triglycerides/blood
7.
BMC Cancer ; 19(1): 812, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31419957

ABSTRACT

BACKGROUND: Reactive oxygen species (ROS), including hydrogen peroxide, drive differentiation of normal fibroblasts into activated fibroblasts, which can generate high amounts of hydrogen peroxide themselves, thereby increasing oxidative stress in the microenvironment. This way, activated fibroblasts can transition into cancer-associated fibroblasts (CAFs). METHODS: Mammary fibroblasts from either female 8 weeks old PRDX1 knockout and wildtype mice or Balb/c mice were studied for characteristic protein expression using immunofluorescence and immunoblotting. Cancer-associated fibroblasts was examined by transwell migration and invasion assays. The binding of PRDX1 to JNK1 was assessed by co-immuneprecipitation and JNK regulation of CAF phenotypes was examined using the JNK inhibitor SP600125. Extracellular hydrogen peroxide levels were measured by chemiluminescence via the reaction between hypochlorite and luminol. Statistical analyses were done using Students t-test. RESULTS: We show here PRDX1 activity as an essential switch in regulating the activated phenotype as loss of PRDX1 results in the development of a CAF-like phenotype in mammary fibroblasts. We also show that PRDX1 regulates JNK kinase signaling thereby inhibiting CAF-like markers and CAF invasion. Inhibition of JNK activity reduced these behaviors. CONCLUSIONS: These data suggest that PRDX1 repressed the activated phenotype of fibroblasts in part through JNK inhibition which may present a novel therapeutic option for CAF-enriched cancers such as breast cancer.


Subject(s)
Fibroblasts/metabolism , Mammary Glands, Animal/cytology , Mitogen-Activated Protein Kinase 8/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Phenotype , Actins/metabolism , Animals , Anthracenes/pharmacology , Female , Gene Knockout Techniques , HEK293 Cells , Humans , Hydrogen Peroxide/metabolism , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Oxidative Stress , Reactive Oxygen Species/metabolism , Transfection , Tumor Microenvironment
8.
Antioxidants (Basel) ; 8(2)2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30678096

ABSTRACT

Reactive oxygen and nitrogen species have cell signaling properties and are involved in a multitude of processes beyond redox homeostasis. The peroxiredoxin (Prdx) proteins are highly sensitive intracellular peroxidases that can coordinate cell signaling via direct reactive species scavenging or by acting as a redox sensor that enables control of binding partner activity. Oxidation of the peroxidatic cysteine residue of Prdx proteins are the classical post-translational modification that has been recognized to modulate downstream signaling cascades, but increasing evidence supports that dynamic changes to phosphorylation of Prdx proteins is also an important determinant in redox signaling. Phosphorylation of Prdx proteins affects three-dimensional structure and function to coordinate cell proliferation, wound healing, cell fate and lipid signaling. The advent of large proteomic datasets has shown that there are many opportunities to understand further how phosphorylation of Prdx proteins fit into intracellular signaling cascades in normal or malignant cells and that more research is necessary. This review summarizes the Prdx family of proteins and details how post-translational modification by kinases and phosphatases controls intracellular signaling.

9.
J Biol Chem ; 294(2): 397-404, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30478172

ABSTRACT

Homologous recombination (HR)-directed DNA double-strand break (DSB) repair enables template-directed DNA repair to maintain genomic stability. RAD51 recombinase (RAD51) is a critical component of HR and facilitates DNA strand exchange in DSB repair. We report here that treating triple-negative breast cancer (TNBC) cells with the fatty acid nitroalkene 10-nitro-octadec-9-enoic acid (OA-NO2) in combination with the antineoplastic DNA-damaging agents doxorubicin, cisplatin, olaparib, and γ-irradiation (IR) enhances the antiproliferative effects of these agents. OA-NO2 inhibited IR-induced RAD51 foci formation and enhanced H2A histone family member X (H2AX) phosphorylation in TNBC cells. Analyses of fluorescent DSB reporter activity with both static-flow cytometry and kinetic live-cell studies enabling temporal resolution of recombination revealed that OA-NO2 inhibits HR and not nonhomologous end joining (NHEJ). OA-NO2 alkylated Cys-319 in RAD51, and this alkylation depended on the Michael acceptor properties of OA-NO2 because nonnitrated and saturated nonelectrophilic analogs of OA-NO2, octadecanoic acid and 10-nitro-octadecanoic acid, did not react with Cys-319. Of note, OA-NO2 alkylation of RAD51 inhibited its binding to ssDNA. RAD51 Cys-319 resides within the SH3-binding site of ABL proto-oncogene 1, nonreceptor tyrosine kinase (ABL1), so we investigated the effect of OA-NO2-mediated Cys-319 alkylation on ABL1 binding and found that OA-NO2 inhibits RAD51-ABL1 complex formation both in vitro and in cell-based immunoprecipitation assays. The inhibition of the RAD51-ABL1 complex also suppressed downstream RAD51 Tyr-315 phosphorylation. In conclusion, RAD51 Cys-319 is a functionally significant site for adduction of soft electrophiles such as OA-NO2 and suggests further investigation of lipid electrophile-based combinational therapies for TNBC.


Subject(s)
Antineoplastic Agents/administration & dosage , DNA Damage/drug effects , Fatty Acids/administration & dosage , Rad51 Recombinase/metabolism , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/physiopathology , Alkylation , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cisplatin/administration & dosage , DNA Repair , Doxorubicin/administration & dosage , Drug Therapy, Combination , Fatty Acids/chemistry , Humans , Protein Binding/drug effects , Proto-Oncogene Mas , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Rad51 Recombinase/chemistry , Rad51 Recombinase/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
10.
Antioxid Redox Signal ; 28(7): 591-608, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29237274

ABSTRACT

SIGNIFICANCE: It has been proposed that cancer cells are heavily dependent on their antioxidant defenses for survival and growth. Peroxiredoxins are a family of abundant thiol-dependent peroxidases that break down hydrogen peroxide, and they have a central role in the maintenance and response of cells to alterations in redox homeostasis. As such, they are potential targets for disrupting tumor growth. Recent Advances: Genetic disruption of peroxiredoxin expression in mice leads to an increased incidence of neoplastic disease, consistent with a role for peroxiredoxins in protecting genomic integrity. In contrast, many human tumors display increased levels of peroxiredoxin expression, suggesting that strengthened antioxidant defenses provide a survival advantage for tumor progression. Peroxiredoxin inhibitors are being developed and explored as therapeutic agents in different cancer models. CRITICAL ISSUES: It is important to complement peroxiredoxin knockout and expression studies with an improved understanding of the biological function of the peroxiredoxins. Although current results can be interpreted within the context that peroxiredoxins scavenge hydroperoxides, some peroxiredoxin family members appear to have more complex roles in regulating the response of cells to oxidative stress through protein interactions with constituents of other signaling pathways. FUTURE DIRECTIONS: Further mechanistic information is required for understanding the role of oxidative stress in cancer, the function of peroxiredoxins in normal versus cancer cells, and for the design and testing of specific peroxiredoxin inhibitors that display selectivity to malignant cells. Antioxid. Redox Signal. 28, 591-608.


Subject(s)
Hydrogen Peroxide/metabolism , Neoplasms/metabolism , Oxidative Stress/genetics , Peroxiredoxins/metabolism , Disease Progression , Humans , Neoplasms/genetics , Neoplasms/pathology , Oxidation-Reduction , Peroxidases/metabolism , Signal Transduction
11.
Antioxid Redox Signal ; 28(1): 62-77, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28398822

ABSTRACT

Precision in redox signaling is attained through posttranslational protein modifications such as oxidation of protein thiols. The peroxidase peroxiredoxin 1 (PRDX1) regulates signal transduction through changes in thiol oxidation of its cysteines. We demonstrate here that PRDX1 is a binding partner for the tumor suppressive transcription factor FOXO3 that directly regulates the FOXO3 stress response. Heightened oxidative stress evokes formation of disulfide-bound heterotrimers linking dimeric PRDX1 to monomeric FOXO3. Absence of PRDX1 enhances FOXO3 nuclear localization and transcription that are dependent on the presence of Cys31 or Cys150 within FOXO3. Notably, FOXO3-T32 phosphorylation is constitutively enhanced in these mutants, but nuclear translocation of mutant FOXO3 is restored with PI3K inhibition. Here we show that on H2O2 exposure, transcription of tumor suppressive miRNAs let-7b and let-7c is regulated by FOXO3 or PRDX1 expression levels and that let-7c is a novel target for FOXO3. Conjointly, inhibition of let-7 microRNAs increases let-7-phenotypes in PRDX1-deficient breast cancer cells. Altogether, these data ascertain the existence of an H2O2-sensitive PRDX1-FOXO3 signaling axis that fine tunes FOXO3 activity toward the transcription of gene targets in response to oxidative stress. Antioxid. Redox Signal. 28, 62-77.


Subject(s)
Forkhead Box Protein O3/genetics , Gene Expression Regulation , MicroRNAs/genetics , Oxidation-Reduction , Peroxiredoxins/metabolism , RNA Interference , Binding Sites , Cell Line , Cell Movement , Disulfides , Humans , Models, Biological , Oxidative Stress , Peroxiredoxins/genetics , Promoter Regions, Genetic , Protein Binding , Protein Transport
12.
Free Radic Biol Med ; 101: 116-128, 2016 12.
Article in English | MEDLINE | ID: mdl-27717869

ABSTRACT

Small molecules of plant origin offer presumptively safe opportunities to prevent carcinogenesis, mutagenesis and other forms of toxicity in humans. However, the mechanisms of action of such plant-based agents remain largely unknown. In recent years the stress responsive transcription factor Nrf2 has been validated as a target for disease chemoprevention. Withania somnifera (WS) is a herb used in Ayurveda (an ancient form of medicine in South Asia). In the recent past, withanolides isolated from WS, such as Withaferin A (WA) have been demonstrated to be preventive and therapeutic against multiple diseases in experimental models. The goals of this study are to evaluate withanolides such as WA as well as Withania somnifera root extract as inducers of Nrf2 signaling, to probe the underlying signaling mechanism of WA and to determine whether prevention of acetaminophen (APAP)-induced hepatic toxicity in mice by WA occurs in an Nrf2-dependent manner. We observed that WA profoundly protects wild-type mice but not Nrf2-disrupted mice against APAP hepatotoxicity. WA is a potent inducer of Nrf2-dependent cytoprotective enzyme expression both in vivo and in vitro. Unexpectedly, WA induces Nrf2 signaling at least in part, in a Keap1-independent, Pten/Pi3k/Akt-dependent manner in comparison to prototypical Nrf2 inducers, sulforaphane and CDDO-Im. The identification of WA as an Nrf2 inducer that can signal through a non-canonical, Keap1-independent pathway provides an opportunity to evaluate the role of other regulatory partners of Nrf2 in the dietary and pharmacological induction of Nrf2-mediated cytoprotection.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , NF-E2-Related Factor 2/genetics , Protective Agents/pharmacology , Withania/chemistry , Withanolides/pharmacology , Acetaminophen/antagonists & inhibitors , Acetaminophen/toxicity , Animals , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cytotoxins/antagonists & inhibitors , Cytotoxins/toxicity , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/deficiency , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Plant Roots/chemistry , Primary Cell Culture , Protective Agents/isolation & purification , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Withanolides/isolation & purification
13.
Arch Biochem Biophys ; 591: 57-65, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26701603

ABSTRACT

The Keap1/Nrf2 pathway, known to regulate the expression of a series of cytoprotective and antioxidant genes, has been studied in the context of obesity and type 2 diabetes; diseases that are characterized by chronic oxidative stress. There is increasing evidence, however, that the transcription factor Nrf2 can crosstalk with pathways not directly related to cytoprotection. Our present work focuses on the effect of Nrf2 on hepatic gluconeogenesis and lipogenesis, two metabolic processes which are dysregulated in the obese/diabetic state. To this end, a genetic mouse model of Nrf2 pathway activation was used (Keap1-hypo; both Keap1 alleles are hypomorphic) and was exposed to a 3-month high-fat diet along with the relevant control wild-type mice. The Keap1-hypo mice were partially protected from obesity, had lower fasting glucose and insulin levels and developed less liver steatosis compared to the wild-type. Key gluconeogenic and lipogenic enzymes were repressed in the Keap1-hypo livers with concomitant activated Ampk signaling. Primary Keap1-hypo hepatocyte cultures also show increased Ampk signaling and repressed glucose production. In conclusion, increased Keap1/Nrf2 signaling in the liver is accompanied by repressed gluconeogenesis and lipogenesis that can, at least partially, explain the ameliorated diabetic phenotype in the Keap1-hypo mice.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Dietary Fats/metabolism , Gluconeogenesis/physiology , Lipogenesis/physiology , Liver/metabolism , NF-E2-Related Factor 2/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cytoskeletal Proteins/genetics , Diet, High-Fat/methods , Kelch-Like ECH-Associated Protein 1 , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/physiology
14.
Toxicol Sci ; 141(1): 112-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24924401

ABSTRACT

The transcription factor Nrf2 (Nfe2l2 nuclear factor, erythroid 2-like 2) regulates gene expression directly, controlling pharmacological and toxicological responses. These processes may also be influenced by the structure of the hepatic vasculature, which distributes blood flow through compartmentalized microenvironments to maintain organismal stability. Castings of the hepatic portal vasculature of albino C57BL/6J but not ICR Nrf2(-/-) mice revealed a congenital intrahepatic shunt that was present in two thirds of Nrf2-disrupted mice. This shunt directly connected the portal vein to the inferior vena cava and displayed characteristics of a patent ductus venosus. Immunohistochemistry revealed that Nrf2(-/-) mice with an intrahepatic shunt manifest changes to hepatic oxygen and protein expression gradients when compared with wild-type (WT) and non-shunted Nrf2(-/-) mice. Centrilobular hypoxia found in WT and Nrf2(-/-) mice without shunts was reduced in Nrf2(-/-) livers with a shunt. Hepatic protein expression of phosphoenolpyruvate carboxykinase (Pepck), normally confined to the periportal zone, exhibited both periportal and centrilobular zonal expression in livers from Nrf2(-/-) mice with an intrahepatic shunt. Centrilobular expression of Cytochrome P450 2E1 (Cyp2e1) was diminished in shunted Nrf2(-/-) livers compared with WT and Nrf2(-/-) livers without shunts. The intrahepatic shunt in Nrf2(-/-) mice was further found to diminish acetaminophen hepatoxicity compared with WT and Nrf2(-/-) non-shunted mice following a 6 h challenge with 250 mg/kg acetaminophen. The presence of an intrahepatic shunt influences several physiological and pathophysiological properties of Nrf2(-/-) mice through changes in blood flow, hepatic oxygenation, and protein expression that extent beyond loss of canonical transactivation of Nrf2 target genes.


Subject(s)
Arteriovenous Malformations/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Cytochrome P-450 CYP2E1/genetics , Disease Models, Animal , Liver Circulation , NF-E2-Related Factor 2/deficiency , Oxygen/metabolism , Acetaminophen/pharmacokinetics , Acetaminophen/toxicity , Animals , Arteriovenous Malformations/genetics , Arteriovenous Malformations/pathology , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Liver/blood supply , Liver/enzymology , Liver/pathology , Liver Circulation/genetics , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , NF-E2-Related Factor 2/genetics
15.
Mol Cell Biol ; 34(4): 653-63, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24298019

ABSTRACT

The Notch signaling pathway enables regulation and control of development, differentiation, and homeostasis through cell-cell communication. Our investigation shows that Notch signaling directly activates the Nrf2 stress adaptive response pathway through recruitment of the Notch intracellular domain (NICD) transcriptosome to a conserved Rbpjκ site in the promoter of Nrf2. Stimulation of Notch signaling through Notch ligand expression in cells and by overexpression of the NICD in Rosa(NICD/-)::AlbCre mice in vivo induces expression of Nrf2 and its target genes. Continuous and transient NICD expression in the liver produces a Notch-dependent cytoprotective response through direct transcriptional activation of Nrf2 signaling to rescue mice from acute acetaminophen toxicity. This response can be reversed upon genetic disruption of Nrf2. Morphological studies showed that the characteristic phenotype of high-density intrahepatic bile ducts and enlarged liver in Rosa(NICD/-)::AlbCre mice could be at least partially reversed after Nrf2 disruption. Furthermore, the liver and bile duct phenotypes could be recapitulated with constitutive activation of Nrf2 signaling in Keap1(F/F)::AlbCre mice. It appears that Notch-to-Nrf2 signaling is another important determinant in liver development and function and promotes cell-cell cytoprotective signaling responses.


Subject(s)
Cytoprotection/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , NF-E2-Related Factor 2/genetics , Receptors, Notch/metabolism , Signal Transduction/genetics , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Liver/metabolism , Mice , Mice, Transgenic , Receptors, Notch/genetics , Signal Transduction/physiology , Transcriptional Activation/genetics
16.
Antioxid Redox Signal ; 13(11): 1649-63, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20367496

ABSTRACT

Activation of the KEAP1-NRF2 signaling pathway is an adaptive response to environmental and endogenous stresses and serves to render animals resistant to chemical carcinogenesis and other forms of toxicity, whereas disruption of the pathway exacerbates these outcomes. This pathway, which can be activated by sulfhydryl-reactive, small-molecule pharmacologic agents, regulates the inducible expression of an extended battery of cytoprotective genes, often by direct binding of the transcription factor to antioxidant response elements in the promoter regions of target genes. However, it is becoming evident that some of the protective effects may be mediated indirectly through cross talk with additional pathways affecting cell survival and other aspects of cell fate. These interactions provide a multi-tiered, integrated response to chemical stresses. This review highlights recent observations on the molecular interactions and their functional consequences between NRF2 and the arylhydrocarbon receptor (AhR), NF-κB, p53, and Notch1 signaling pathways.


Subject(s)
NF-E2-Related Factor 2/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Survival , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasms/metabolism , Neoplasms/prevention & control , Receptor, Notch1/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Response Elements , Signal Transduction , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism
18.
Mol Cancer Ther ; 7(2): 330-40, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18245669

ABSTRACT

Mitogen-activated protein kinase phosphatase (MKP)-1 is a dual-specificity phosphatase that negatively regulates the activity of mitogen-activated kinases and that is overexpressed in human tumors. Contemporary studies suggest that induction of MKP-1 during chemotherapy may limit the efficacy of clinically used antineoplastic agents. Thus, MKP-1 is a rational target to enhance anticancer drug activity, but suitable small-molecule inhibitors of MKP-1 are currently unavailable. Here, we have used a high-content, multiparameter fluorescence-based chemical complementation assay for MKP activity in intact mammalian cells to evaluate the cellular MKP-1 and MKP-3 inhibitory activities of four previously described, quinone-based, dual-specificity phosphatase inhibitors, that is, NSC 672121, NSC 95397, DA-3003-1 (NSC 663284), and JUN-1111. All compounds induced formation of reactive oxygen species in mammalian cells, but only one (NSC 95397) inhibited cellular MKP-1 and MKP-3 with an IC(50) of 13 mumol/L. Chemical induction of MKP-1 by dexamethasone protected cells from paclitaxel-induced apoptosis but had no effect on NSC 95397. NSC 95397 phenocopied the effects of MKP-1 small inhibitory RNA by reversing the cytoprotective effects of dexamethasone in paclitaxel-treated cells. Isobologram analysis revealed synergism between paclitaxel and NSC 95397 only in the presence of dexamethasone. The data show the power of a well-defined cellular assay for identifying cell-active inhibitors of MKPs and support the hypothesis that small-molecule inhibitors of MKP-1 may be useful as antineoplastic agents under conditions of high MKP-1 expression.


Subject(s)
Dexamethasone/antagonists & inhibitors , Dexamethasone/pharmacology , Drug Resistance, Neoplasm/drug effects , Mitogen-Activated Protein Kinase Phosphatases/antagonists & inhibitors , Naphthoquinones/pharmacology , Paclitaxel/pharmacology , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Survival/drug effects , Cytoprotection/drug effects , Drug Evaluation, Preclinical , Drug Synergism , Dual Specificity Phosphatase 1/antagonists & inhibitors , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 6/antagonists & inhibitors , Dual Specificity Phosphatase 6/metabolism , HeLa Cells , Humans , Models, Biological , Naphthoquinones/administration & dosage , Paclitaxel/administration & dosage , Quinones/pharmacology , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
19.
Assay Drug Dev Technol ; 5(3): 319-32, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17638532

ABSTRACT

We report here the miniaturization, development, and implementation of a homogeneous 384-well fluorescence intensity high-throughput screening (HTS) assay for identifying mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) dual-specificity phosphatase inhibitors. As part of the National Institutes of Health (NIH) Molecular Libraries Screening Center Network (MLSCN), the MKP-1 assay was utilized to screen an NIH diversity library of 65,239 compounds for inhibitors of MKP-1 activity at 10 microM and was also used to confirm the concentration dependence of active agents identified in the primary screen. We observed 100 (0.15%) compounds that inhibited MKP-1 in vitro by > or =50% at 10 microM in the primary assay, and 46 of the 100 compounds were confirmed as concentration-dependent inhibitors of MKP-1 with 50% inhibitory concentration (IC(50)) values of <50 microM; four exhibited IC(50) values <1.0 microM, six produced IC(50) values in the 1-10 microM range, and 36 produced IC(50) values in the 10-50 microM range. A clustering and classification analysis of the compound structures of the 46 confirmed MKP-1 inhibitors produced 29 singleton structures and seven clusters of related structures. Some MKP-1 inhibitors were members of structural classes or contained substructure pharmacophores that previously were reported to inhibit either MKP-1 or other protein tyrosine phosphatases, validating the HTS assay. Importantly, we have identified several attractive and novel MKP-1 inhibitor structures that warrant further investigation as potential probes to study the biology of MKP-1 and its role in controlling the amplitude and/or duration of MAPK signaling, cell survival, and tumor progression.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Immediate-Early Proteins/antagonists & inhibitors , Phosphoprotein Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/antagonists & inhibitors , Dose-Response Relationship, Drug , Dual Specificity Phosphatase 1 , Fluorescence , MAP Kinase Signaling System/physiology , Protein Phosphatase 1
20.
J Pharmacol Exp Ther ; 322(3): 940-7, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17538006

ABSTRACT

Mitogen-activated protein kinase phosphatase 1 (MKP-1) is a tyrosine phosphatase superfamily member that dephosphorylates and inactivates cardinal mitogen-activated protein kinase (MAPK) substrates, such as p38, c-Jun NH(2)-terminal kinase, and extracellular signal-regulated kinase. Although these MAPK substrates regulate many essential cellular processes associated with human diseases, few pharmacological inhibitors have been described. The lack of readily available selective MKP-1 inhibitors has severely limited interrogation of its biological role and was one rationale for using a recently described tricyclic pyrrole-2-carboxamide library in our screening efforts. In this report we demonstrate the pharmacological richness of the pyrrole carboxamide library by the finding that 10 of 172 members inhibited human MKP-1. Two of the pyrrole carboxamides, PSI2106 and MDF2085, were especially notable in vitro inhibitors of recombinant human MKP-1 enzyme activity with IC(50) values of 8.0 +/- 0.9 and 8.3 +/- 0.8 microM, respectively. Both showed some selectivity for MKP-1 over the closely related phosphatases MKP-3, Cdc25B, VHR, and PTP1B. Computational examination of the surface properties near the catalytic site revealed that the phosphatases studied differ significantly in their electrostatic potential at the substrate binding site. The compounds inhibited MKP-1 reversibly but displayed mixed kinetics. Phosphatase inhibition was retained in the presence of physiologically relevant concentrations of glutathione. Molecular docking studies suggested that PSI2106 may interact with His(229) and Phe(299) on MKP-1. These results reveal the power of using a small focused library for identifying pharmacological probes.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Immediate-Early Proteins/antagonists & inhibitors , Phosphoprotein Phosphatases/antagonists & inhibitors , Proline/analogs & derivatives , Protein Tyrosine Phosphatases/antagonists & inhibitors , Amides , Combinatorial Chemistry Techniques , Dual Specificity Phosphatase 1 , Humans , Mitogen-Activated Protein Kinases , Molecular Structure , Proline/chemistry , Proline/pharmacology , Protein Phosphatase 1 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...