Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Allergy ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011970

ABSTRACT

Exposure to toxic substances, introduced into our daily lives during industrialization and modernization, can disrupt the epithelial barriers in the skin, respiratory, and gastrointestinal systems, leading to microbial dysbiosis and inflammation. Athletes and physically active individuals are at increased risk of exposure to agents that damage the epithelial barriers and microbiome, and their extreme physical exercise exerts stress on many organs, resulting in tissue damage and inflammation. Epithelial barrier-damaging substances include surfactants and enzymes in cleaning products, laundry and dishwasher detergents, chlorine in swimming pools, microplastics, air pollutants such as ozone, particulate matter, and diesel exhaust. Athletes' high-calorie diet often relies on processed foods that may contain food emulsifiers and other additives that may cause epithelial barrier dysfunction and microbial dysbiosis. The type of the material used in the sport equipment and clothing and their extensive exposure may increase the inflammatory effects. Excessive travel-related stress, sleep disturbances and different food and microbe exposure may represent additional factors. Here, we review the detrimental impact of toxic agents on epithelial barriers and microbiome; bring a new perspective on the factors affecting the health and performance of athletes and physically active individuals.

2.
Trends Neurosci ; 42(3): 151-163, 2019 03.
Article in English | MEDLINE | ID: mdl-30795845

ABSTRACT

From an evolutionary perspective, the genes of enteric microbes transmitted reliably across generations are nearly as much a part of the human organism as our own genes. Disruption of the microbiome leading to extinction of key 'heirloom' taxa can deprive individuals of metabolic pathways that have been present in their ancestors for millennia. Some of these pathways support essential synthesis and toxin clearance processes, including the generation of blood-brain barrier-crossing metabolic products crucial for normal brain function. Here, we discuss three such pathways: endogenous benzodiazepine synthesis, production of queuine/queuosine, and excretion of dietary mercury. Among them, these pathways have the potential to impact systems relevant to a wide range of neurodevelopmental and psychiatric conditions including autism, depression, anxiety, and schizophrenia.


Subject(s)
Brain/physiopathology , Depression/physiopathology , Dysbiosis/physiopathology , Microbiota/physiology , Animals , Anxiety/physiopathology , Humans , Schizophrenia/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...