Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(4): e0215457, 2019.
Article in English | MEDLINE | ID: mdl-30998735

ABSTRACT

The need for an efficacious vaccine against highly pathogenic filoviruses was reinforced by the recent and devastating 2014-2016 outbreak of Ebola virus (EBOV) disease in Guinea, Sierra Leone, and Liberia that resulted in more than 10,000 casualties. Such a vaccine would need to be vetted through a U.S. Food and Drug Administration (FDA) traditional, accelerated, or Animal Rule or similar European Medicines Agency (EMA) regulatory pathway. Under the FDA Animal Rule, vaccine-induced immune responses correlating with survival of non-human primates (NHPs), or another well-characterized animal model, following lethal EBOV challenge will need to be bridged to human immune response distributions in clinical trials. When possible, species-neutral methods are ideal for detection and bridging of these immune responses, such as methods to quantify anti-EBOV glycoprotein (GP) immunoglobulin G (IgG) antibodies. Further, any method that will be used to support advanced clinical and non-clinical trials will most likely require formal validation to assess suitability prior to use. Reported here is the development, qualification, and validation of a Filovirus Animal Nonclinical Group anti-EBOV GP IgG Enzyme-Linked Immunosorbent Assay (FANG anti-EBOV GP IgG ELISA) for testing human serum samples.


Subject(s)
Antibodies, Viral/blood , Ebolavirus , Hemorrhagic Fever, Ebola/blood , Immunoglobulin G/blood , Animals , Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Female , Glycoproteins/immunology , Haplorhini , Humans , Immunoglobulin G/immunology , Liberia , Male , Sierra Leone , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...