Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(27): e2100036119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35771940

ABSTRACT

Native Americans domesticated maize (Zea mays ssp. mays) from lowland teosinte parviglumis (Zea mays ssp. parviglumis) in the warm Mexican southwest and brought it to the highlands of Mexico and South America where it was exposed to lower temperatures that imposed strong selection on flowering time. Phospholipids are important metabolites in plant responses to low-temperature and phosphorus availability and have been suggested to influence flowering time. Here, we combined linkage mapping with genome scans to identify High PhosphatidylCholine 1 (HPC1), a gene that encodes a phospholipase A1 enzyme, as a major driver of phospholipid variation in highland maize. Common garden experiments demonstrated strong genotype-by-environment interactions associated with variation at HPC1, with the highland HPC1 allele leading to higher fitness in highlands, possibly by hastening flowering. The highland maize HPC1 variant resulted in impaired function of the encoded protein due to a polymorphism in a highly conserved sequence. A meta-analysis across HPC1 orthologs indicated a strong association between the identity of the amino acid at this position and optimal growth in prokaryotes. Mutagenesis of HPC1 via genome editing validated its role in regulating phospholipid metabolism. Finally, we showed that the highland HPC1 allele entered cultivated maize by introgression from the wild highland teosinte Zea mays ssp. mexicana and has been maintained in maize breeding lines from the Northern United States, Canada, and Europe. Thus, HPC1 introgressed from teosinte mexicana underlies a large metabolic QTL that modulates phosphatidylcholine levels and has an adaptive effect at least in part via induction of early flowering time.


Subject(s)
Adaptation, Physiological , Flowers , Gene-Environment Interaction , Phosphatidylcholines , Phospholipases A1 , Plant Proteins , Zea mays , Alleles , Chromosome Mapping , Flowers/genetics , Flowers/metabolism , Genes, Plant , Genetic Linkage , Phosphatidylcholines/metabolism , Phospholipases A1/classification , Phospholipases A1/genetics , Phospholipases A1/metabolism , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/growth & development
2.
Nat Plants ; 7(3): 287-294, 2021 03.
Article in English | MEDLINE | ID: mdl-33619356

ABSTRACT

Several yield-related traits selected during crop domestication and improvement1,2 are associated with increases in meristem size3, which is controlled by CLE peptide signals in the CLAVATA-WUSCHEL pathway4-13. Here, we engineered quantitative variation for yield-related traits in maize by making weak promoter alleles of CLE genes, and a null allele of a newly identified partially redundant compensating CLE gene, using CRISPR-Cas9 genome editing. These strategies increased multiple maize grain-yield-related traits, supporting the enormous potential for genomic editing in crop enhancement.


Subject(s)
Edible Grain/genetics , Genes, Plant , Promoter Regions, Genetic , Zea mays/genetics , CRISPR-Cas Systems , Edible Grain/growth & development , Gene Editing , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Signal Transduction , Zea mays/growth & development
3.
Plant Physiol ; 172(3): 1876-1898, 2016 11.
Article in English | MEDLINE | ID: mdl-27621426

ABSTRACT

Sucrose transporters (SUTs) translocate sucrose (Suc) across cellular membranes, and in eudicots, multiple SUTs are known to function in Suc phloem loading in leaves. In maize (Zea mays), the Sucrose Transporter1 (ZmSut1) gene has been implicated in Suc phloem loading based upon RNA expression in leaves, electrophysiological experiments, and phenotypic analysis of zmsut1 mutant plants. However, no previous studies have examined the cellular expression of ZmSut1 RNA or the subcellular localization of the ZmSUT1 protein to assess the gene's hypothesized function in Suc phloem loading or to evaluate its potential roles, such as phloem unloading, in nonphotosynthetic tissues. To this end, we performed RNA in situ hybridization experiments, promoter-reporter gene analyses, and ZmSUT1 localization studies to elucidate the cellular expression pattern of the ZmSut1 transcript and protein. These data showed that ZmSut1 was expressed in multiple cell types throughout the plant and indicated that it functions in phloem companion cells to load Suc and also in other cell types to retrieve Suc from the apoplasm to prevent its accumulation and loss to the transpiration stream. Additionally, by comparing a phloem-mobile tracer with ZmSut1 expression, we determined that developing maize leaves dynamically switch from symplasmic to apoplasmic phloem unloading, reconciling previously conflicting reports, and suggest that ZmSut1 does not have an apparent function in either unloading process. A model for the dual roles for ZmSut1 function (phloem loading and apoplasmic recycling), Sut1 evolution, and its possible use to enhance Suc export from leaves in engineering C3 grasses for C4 photosynthesis is discussed.


Subject(s)
Membrane Transport Proteins/genetics , Phloem/metabolism , Plant Proteins/genetics , Sucrose/metabolism , Zea mays/genetics , Zea mays/metabolism , Biological Transport , Cell Membrane/metabolism , Genes, Reporter , In Situ Hybridization , Membrane Transport Proteins/metabolism , Models, Biological , Mutation/genetics , Plant Leaves/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Biosynthesis , Protein Transport , RNA, Plant/genetics , RNA, Plant/metabolism , Reproduction/genetics , Transcription, Genetic , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...