Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 5271, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489470

ABSTRACT

Chimeric antigen receptor (CAR) T cells have emerged as a promising class of therapeutic agents, generating remarkable responses in the clinic for a subset of human cancers. One major challenge precluding the wider implementation of CAR therapy is the paucity of tumor-specific antigens. Here, we describe the development of a CAR targeting the tumor-specific isocitrate dehydrogenase 2 (IDH2) with R140Q mutation presented on the cell surface in complex with a common human leukocyte antigen allele, HLA-B*07:02. Engineering of the hinge domain of the CAR, as well as crystal structure-guided optimization of the IDH2R140Q-HLA-B*07:02-targeting moiety, enhances the sensitivity and specificity of CARs to enable targeting of this HLA-restricted neoantigen. This approach thus holds promise for the development and optimization of immunotherapies specific to other cancer driver mutations that are difficult to target by conventional means.


Subject(s)
HLA-B7 Antigen/chemistry , Isocitrate Dehydrogenase/metabolism , Protein Engineering/methods , Receptors, Chimeric Antigen/chemistry , Animals , Antigens, Neoplasm/metabolism , COS Cells , Cell Line , Chlorocebus aethiops , Epitopes , HLA-B7 Antigen/metabolism , Humans , Immunoglobulin Fab Fragments/chemistry , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/immunology , Mutation , Peptide Library , Protein Conformation , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/physiology
2.
Sci Immunol ; 6(57)2021 03 01.
Article in English | MEDLINE | ID: mdl-33649101

ABSTRACT

Mutations in the RAS oncogenes occur in multiple cancers, and ways to target these mutations has been the subject of intense research for decades. Most of these efforts are focused on conventional small-molecule drugs rather than antibody-based therapies because the RAS proteins are intracellular. Peptides derived from recurrent RAS mutations, G12V and Q61H/L/R, are presented on cancer cells in the context of two common human leukocyte antigen (HLA) alleles, HLA-A3 and HLA-A1, respectively. Using phage display, we isolated single-chain variable fragments (scFvs) specific for each of these mutant peptide-HLA complexes. The scFvs did not recognize the peptides derived from the wild-type form of RAS proteins or other related peptides. We then sought to develop an immunotherapeutic agent that was capable of killing cells presenting very low levels of these RAS-derived peptide-HLA complexes. Among many variations of bispecific antibodies tested, one particular format, the single-chain diabody (scDb), exhibited superior reactivity to cells expressing low levels of neoantigens. We converted the scFvs to this scDb format and demonstrated that they were capable of inducing T cell activation and killing of target cancer cells expressing endogenous levels of the mutant RAS proteins and cognate HLA alleles. CRISPR-mediated alterations of the HLA and RAS genes provided strong genetic evidence for the specificity of the scDbs. Thus, this approach could be applied to other common oncogenic mutations that are difficult to target by conventional means, allowing for more specific anticancer therapeutics.


Subject(s)
Antibodies, Bispecific/pharmacology , Antigens, Neoplasm , Biomarkers, Tumor/antagonists & inhibitors , Mutant Proteins/antagonists & inhibitors , ras Proteins/antagonists & inhibitors , Amino Acid Sequence , Animals , Antibodies, Bispecific/immunology , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/immunology , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Cell Line , Cross Reactions , HLA Antigens/immunology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mutant Proteins/chemistry , Mutant Proteins/immunology , Mutation , Peptide Fragments , Protein Binding/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , ras Proteins/chemistry , ras Proteins/genetics , ras Proteins/immunology
3.
Science ; 371(6533)2021 03 05.
Article in English | MEDLINE | ID: mdl-33649166

ABSTRACT

TP53 (tumor protein p53) is the most commonly mutated cancer driver gene, but drugs that target mutant tumor suppressor genes, such as TP53, are not yet available. Here, we describe the identification of an antibody highly specific to the most common TP53 mutation (R175H, in which arginine at position 175 is replaced with histidine) in complex with a common human leukocyte antigen-A (HLA-A) allele on the cell surface. We describe the structural basis of this specificity and its conversion into an immunotherapeutic agent: a bispecific single-chain diabody. Despite the extremely low p53 peptide-HLA complex density on the cancer cell surface, the bispecific antibody effectively activated T cells to lyse cancer cells that presented the neoantigen in vitro and in mice. This approach could in theory be used to target cancers containing mutations that are difficult to target in conventional ways.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neoplasm/immunology , Antigens, Neoplasm/immunology , HLA-A2 Antigen/immunology , Neoplasms/therapy , Tumor Suppressor Protein p53/immunology , Alleles , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/therapeutic use , Antibodies, Neoplasm/chemistry , Antibodies, Neoplasm/therapeutic use , Arginine/genetics , COS Cells , Chlorocebus aethiops , Female , HEK293 Cells , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/genetics , Histidine/genetics , Humans , Immunization, Passive , Jurkat Cells , Lymphocyte Activation , Mice, Inbred NOD , Mutation , T-Lymphocytes/immunology , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
4.
J Biol Chem ; 294(50): 19322-19334, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31690625

ABSTRACT

Mutations in CTNNB1, the gene encoding ß-catenin, are common in colon and liver cancers, the most frequent mutation affecting Ser-45 in ß-catenin. Peptides derived from WT ß-catenin have previously been shown to be presented on the cell surface as part of major histocompatibility complex (MHC) class I, suggesting an opportunity for targeting this common driver gene mutation with antibody-based therapies. Here, crystal structures of both the WT and S45F mutant peptide bound to HLA-A*03:01 at 2.20 and 2.45 Å resolutions, respectively, confirmed the accessibility of the phenylalanine residue for antibody recognition. Phage display was then used to identify single-chain variable fragment clones that selectively bind the S45F mutant peptide presented in HLA-A*03:01 and have minimal WT or other off-target binding. Following the initial characterization of five clones, we selected a single clone, E10, for further investigation. We developed a computational model of the binding of E10 to the mutant peptide-bound HLA-A3, incorporating data from affinity maturation as initial validation. In the future, our model may be used to design clones with maintained specificity and higher affinity. Such derivatives could be adapted into either cell-based (CAR-T) or protein-based (bispecific T-cell engagers) therapies to target cancer cells harboring the S45F mutation in CTNNB1.


Subject(s)
Histocompatibility Antigens Class I/genetics , Immunoglobulin Fragments/chemistry , Protein Engineering , beta Catenin/genetics , Cell Line , Histocompatibility Antigens Class I/chemistry , Humans , Models, Molecular , Mutation , beta Catenin/chemistry
5.
G3 (Bethesda) ; 7(1): 309-318, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27866148

ABSTRACT

The Drosophila melanogaster ovarian follicle cell lineage provides a powerful system for investigating how epigenetic changes contribute to differentiation. Downstream from an epithelial stem cell, follicle progenitors undergo nine mitotic cell cycles before transitioning to the endocycle and initiating differentiation. During their proliferative phase, follicle progenitors experience Lsd1-dependent changes in epigenetic stability that can be monitored using GAL4::UAS variegation. Eventually, follicle progenitors acquire competence to respond to Delta, a Notch ligand present in the environment, which signals them to cease division and initiate differentiation. The time required to acquire competence determines the duration of mitotic cycling and hence the final number of follicle cells. We carried out a screen for dominant modifiers of variegation spanning nearly 70% of Drosophila euchromatin to identify new genes influencing follicle progenitor epigenetic maturation. The eight genes found include chromatin modifiers, but also cell cycle regulators and transcription factors. Five of the modifier genes accelerate the acquisition of progenitor competence and reduce follicle cell number, however, the other three genes affect follicle cell number in an unexpected manner.


Subject(s)
Drosophila melanogaster/genetics , Oogenesis/genetics , Ovarian Follicle/growth & development , Receptors, Notch/genetics , Transcription Factors/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Drosophila Proteins/genetics , Epigenesis, Genetic , Euchromatin/genetics , Female , Mitosis/genetics , Ovarian Follicle/metabolism , Oxidoreductases, N-Demethylating/genetics , Stem Cells
6.
Proc Natl Acad Sci U S A ; 112(32): 9967-72, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26216968

ABSTRACT

Mutant epitopes encoded by cancer genes are virtually always located in the interior of cells, making them invisible to conventional antibodies. We here describe an approach to identify single-chain variable fragments (scFvs) specific for mutant peptides presented on the cell surface by HLA molecules. We demonstrate that these scFvs can be successfully converted to full-length antibodies, termed MANAbodies, targeting "Mutation-Associated Neo-Antigens" bound to HLA. A phage display library representing a highly diverse array of single-chain variable fragment sequences was first designed and constructed. A competitive selection protocol was then used to identify clones specific for mutant peptides bound to predefined HLA types. In this way, we obtained two scFvs, one specific for a peptide encoded by a common KRAS mutant and the other by a common epidermal growth factor receptor (EGFR) mutant. The scFvs bound to these peptides only when the peptides were complexed with HLA-A2 (KRAS peptide) or HLA-A3 (EGFR peptide). We converted one scFv to a full-length antibody (MANAbody) and demonstrate that the MANAbody specifically reacts with mutant peptide-HLA complex even when the peptide differs by only one amino acid from the normal, WT form.


Subject(s)
Epitopes/genetics , Epitopes/immunology , HLA Antigens/genetics , HLA Antigens/immunology , Mutation/genetics , Single-Chain Antibodies/immunology , Cell Membrane/metabolism , Cell Surface Display Techniques , Clone Cells , Humans , Mutant Proteins/metabolism , Peptides/metabolism
7.
ACS Nano ; 9(7): 6861-71, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26171764

ABSTRACT

Adoptive immunotherapy (AIT) can mediate durable regression of cancer, but widespread adoption of AIT is limited by the cost and complexity of generating tumor-specific T cells. Here we develop an Enrichment + Expansion strategy using paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T cells from rare naïve precursors and predicted neo-epitope responses. Nano-aAPC are capable of enriching rare tumor-specific T cells in a magnetic column and subsequently activating them to induce proliferation. Enrichment + Expansion resulted in greater than 1000-fold expansion of both mouse and human tumor-specific T cells in 1 week, with nano-aAPC based enrichment conferring a proliferation advantage during both in vitro culture and after adoptive transfer in vivo. Robust T cell responses were seen not only for shared tumor antigens, but also for computationally predicted neo-epitopes. Streamlining the rapid generation of large numbers of tumor-specific T cells in a cost-effective fashion through Enrichment + Expansion can be a powerful tool for immunotherapy.


Subject(s)
Antigen-Presenting Cells/cytology , Antigens, Neoplasm/immunology , Cell Separation/methods , Nanoparticles/chemistry , Adaptive Immunity , Animals , Antigen-Presenting Cells/immunology , Antigens, Neoplasm/chemistry , Cell Line, Tumor , Cells, Cultured , Humans , Immunotherapy/methods , Mice , Mice, Inbred C57BL
8.
N Engl J Med ; 372(26): 2509-20, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26028255

ABSTRACT

BACKGROUND: Somatic mutations have the potential to encode "non-self" immunogenic antigens. We hypothesized that tumors with a large number of somatic mutations due to mismatch-repair defects may be susceptible to immune checkpoint blockade. METHODS: We conducted a phase 2 study to evaluate the clinical activity of pembrolizumab, an anti-programmed death 1 immune checkpoint inhibitor, in 41 patients with progressive metastatic carcinoma with or without mismatch-repair deficiency. Pembrolizumab was administered intravenously at a dose of 10 mg per kilogram of body weight every 14 days in patients with mismatch repair-deficient colorectal cancers, patients with mismatch repair-proficient colorectal cancers, and patients with mismatch repair-deficient cancers that were not colorectal. The coprimary end points were the immune-related objective response rate and the 20-week immune-related progression-free survival rate. RESULTS: The immune-related objective response rate and immune-related progression-free survival rate were 40% (4 of 10 patients) and 78% (7 of 9 patients), respectively, for mismatch repair-deficient colorectal cancers and 0% (0 of 18 patients) and 11% (2 of 18 patients) for mismatch repair-proficient colorectal cancers. The median progression-free survival and overall survival were not reached in the cohort with mismatch repair-deficient colorectal cancer but were 2.2 and 5.0 months, respectively, in the cohort with mismatch repair-proficient colorectal cancer (hazard ratio for disease progression or death, 0.10 [P<0.001], and hazard ratio for death, 0.22 [P=0.05]). Patients with mismatch repair-deficient noncolorectal cancer had responses similar to those of patients with mismatch repair-deficient colorectal cancer (immune-related objective response rate, 71% [5 of 7 patients]; immune-related progression-free survival rate, 67% [4 of 6 patients]). Whole-exome sequencing revealed a mean of 1782 somatic mutations per tumor in mismatch repair-deficient tumors, as compared with 73 in mismatch repair-proficient tumors (P=0.007), and high somatic mutation loads were associated with prolonged progression-free survival (P=0.02). CONCLUSIONS: This study showed that mismatch-repair status predicted clinical benefit of immune checkpoint blockade with pembrolizumab. (Funded by Johns Hopkins University and others; ClinicalTrials.gov number, NCT01876511.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , DNA Mismatch Repair , Neoplasm Metastasis/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/secondary , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents/adverse effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Metastasis/genetics
9.
Proc Natl Acad Sci U S A ; 111(32): 11774-9, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25071169

ABSTRACT

Impressive responses have been observed in patients treated with checkpoint inhibitory anti-programmed cell death-1 (PD-1) or anti-cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) antibodies. However, immunotherapy against poorly immunogenic cancers remains a challenge. Here we report that treatment with both anti-PD-1 and anti-CTLA-4 antibodies was unable to eradicate large, modestly immunogenic CT26 tumors or metastatic 4T1 tumors. Cotreatment with epigenetic-modulating drugs and checkpoint inhibitors markedly improved treatment outcomes, curing more than 80% of the tumor-bearing mice. Functional studies revealed that the primary targets of the epigenetic modulators were myeloid-derived suppressor cells (MDSCs). A PI3K inhibitor that reduced circulating MDSCs also eradicated 4T1 tumors in 80% of the mice when combined with immune checkpoint inhibitors. Thus, cancers resistant to immune checkpoint blockade can be cured by eliminating MDSCs.


Subject(s)
Immunotherapy/methods , Myeloid Cells/immunology , Neoplasm Metastasis/immunology , Neoplasm Metastasis/therapy , Animals , Antibodies, Monoclonal/administration & dosage , Azacitidine/administration & dosage , Benzamides/administration & dosage , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cell Line, Tumor , Colorectal Neoplasms/immunology , Colorectal Neoplasms/secondary , Colorectal Neoplasms/therapy , Combined Modality Therapy , Epigenesis, Genetic/drug effects , Female , Histone Deacetylase Inhibitors/administration & dosage , Humans , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/secondary , Mammary Neoplasms, Experimental/therapy , Mice , Mice, Inbred BALB C , Myeloid Cells/drug effects , Neoplasm Metastasis/genetics , Phosphoinositide-3 Kinase Inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Pyridines/administration & dosage
10.
Science ; 343(6167): 152-7, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24310608

ABSTRACT

Autoimmune diseases are thought to be initiated by exposures to foreign antigens that cross-react with endogenous molecules. Scleroderma is an autoimmune connective tissue disease in which patients make antibodies to a limited group of autoantigens, including RPC1, encoded by the POLR3A gene. As patients with scleroderma and antibodies against RPC1 are at increased risk for cancer, we hypothesized that the "foreign" antigens in this autoimmune disease are encoded by somatically mutated genes in the patients' incipient cancers. Studying cancers from scleroderma patients, we found genetic alterations of the POLR3A locus in six of eight patients with antibodies to RPC1 but not in eight patients without antibodies to RPC1. Analyses of peripheral blood lymphocytes and serum suggested that POLR3A mutations triggered cellular immunity and cross-reactive humoral immune responses. These results offer insight into the pathogenesis of scleroderma and provide support for the idea that acquired immunity helps to control naturally occurring cancers.


Subject(s)
Autoantigens/immunology , Autoimmune Diseases/complications , Neoplasms/immunology , RNA Polymerase III/immunology , Scleroderma, Systemic/complications , Alleles , Autoantibodies/blood , Autoantibodies/immunology , Autoantigens/genetics , Autoimmune Diseases/genetics , Autoimmunity/genetics , CD4-Positive T-Lymphocytes/immunology , Genetic Loci , Humans , Mutation, Missense , Neoplasms/complications , Neoplasms/genetics , Polymorphism, Single Nucleotide , RNA Polymerase III/genetics , Scleroderma, Systemic/genetics
11.
Proc Natl Acad Sci U S A ; 107(16): 7389-94, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20368445

ABSTRACT

Stem and embryonic cells facilitate programming toward multiple daughter cell fates, whereas differentiated cells resist reprogramming and oncogenic transformation. How alterations in the chromatin-based machinery of epigenetic inheritance contribute to these differences remains poorly known. We observed random, heritable changes in GAL4/UAS transgene programming during Drosophila ovarian follicle stem cell differentiation and used them to measure the stage-specific epigenetic stability of gene programming. The frequency of GAL4/UAS reprogramming declines more than 100-fold over the nine divisions comprising this stem cell lineage. Stabilization acts in cis, suggesting that it is chromatin-based, and correlates with increased S phase length. Our results suggest that stem/early progenitor cells cannot accurately transmit nongenetic information to their progeny; full epigenetic competence is acquired only gradually during early differentiation. Modulating epigenetic inheritance may be a critical process controlling transitions between the pleuripotent and differentiated states.


Subject(s)
Cell Differentiation , Epigenesis, Genetic , Ovarian Follicle/cytology , Stem Cells/cytology , Animals , Binding Sites , Cell Lineage , Drosophila melanogaster , Female , Gene Expression Regulation, Developmental , Gene Silencing , Green Fluorescent Proteins/metabolism , Models, Biological , S Phase , Sequence Analysis, DNA , Transgenes
12.
Genetics ; 175(3): 1505-31, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17194782

ABSTRACT

Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600-900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Gene Expression Regulation, Developmental , Gene Library , Genes, Insect/genetics , Animals , Base Sequence , DNA Primers , DNA Transposable Elements/genetics , Drosophila Proteins/metabolism , Female , Gene Expression Profiling/methods , Green Fluorescent Proteins/metabolism , Molecular Sequence Data , Mutagenesis , Ovary/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Salivary Glands/metabolism , Sequence Analysis, DNA
13.
Dev Cell ; 10(3): 303-15, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16516834

ABSTRACT

The centromere-specific histone variant CENP-A (CID in Drosophila) is a structural and functional foundation for kinetochore formation and chromosome segregation. Here, we show that overexpressed CID is mislocalized into normally noncentromeric regions in Drosophila tissue culture cells and animals. Analysis of mitoses in living and fixed cells reveals that mitotic delays, anaphase bridges, chromosome fragmentation, and cell and organismal lethality are all direct consequences of CID mislocalization. In addition, proteins that are normally restricted to endogenous kinetochores assemble at a subset of ectopic CID incorporation regions. The presence of microtubule motors and binding proteins, spindle attachments, and aberrant chromosome morphologies demonstrate that these ectopic kinetochores are functional. We conclude that CID mislocalization promotes formation of ectopic centromeres and multicentric chromosomes, which causes chromosome missegregation, aneuploidy, and growth defects. Thus, CENP-A mislocalization is one possible mechanism for genome instability during cancer progression, as well as centromere plasticity during evolution.


Subject(s)
Centromere/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Histones/metabolism , Kinetochores/metabolism , Animals , Animals, Genetically Modified , Cell Cycle Proteins/metabolism , Centromere Protein A , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/growth & development , Drosophila melanogaster/physiology , Histones/genetics , Larva/anatomy & histology , Larva/physiology , Microtubules/metabolism , Mitosis/physiology , Molecular Motor Proteins/metabolism , Phenotype , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...