Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Xenobiotica ; 35(7): 715-25, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16316930

ABSTRACT

Conjugation of carboxylate drugs with D-glucuronic acid is of considerable interest because of the inherent reactivity of the resulting beta-1-O-acyl glucuronides. These conjugates can degrade by spontaneous hydrolysis and internal acyl migration. beta-1-O-acyl glucuronides and their acyl migration products can also react covalently with macromolecules with potential toxicological consequences. The spontaneous degradation of the diastereoisomeric beta-1-O-acyl glucuronide metabolites of the racemic drug ketoprofen, two of its ring-hydroxylated metabolites and of tolmetin beta-1-O-acyl glucuronide was investigated by (1)H-NMR spectroscopy in buffer solutions, at pH 7.4 and 37 degrees C. A plot of the logarithm of the peak integrals against time revealed first-order kinetics. Degradation rates and half-lives were calculated for each glucuronide using first-order reaction equations. Tolmetin glucuronide had the fastest degradation rate, whilst all of the ketoprofen-related glucuronides had similar degradation rates. The degradation of the diastereoisomeric glucuronides was stereoselective, with the rate for the (S)-isomer always slower compared with the (R)-isomer by approximately a factor of 2.


Subject(s)
Glucuronic Acid/chemistry , Ketoprofen/analogs & derivatives , Tolmetin/analogs & derivatives , Buffers , Ketoprofen/chemistry , Kinetics , Magnetic Resonance Spectroscopy/methods , Stereoisomerism , Tolmetin/chemistry
2.
Xenobiotica ; 34(11-12): 1075-89, 2004.
Article in English | MEDLINE | ID: mdl-15801549

ABSTRACT

The identity of the human metabolites of ketoprofen (2-(3-benzoylphenyl)-propanoic acid) excreted via urine was investigated after a single oral dose of the racemic drug. Drug metabolites were concentrated and partially purified from urine using solid-phase extraction chromatography before separation and identification by directly coupled HPLC-MS and HPLC-NMR. The metabolites identified were the ester glucuronides of the parent drug and its phase I metabolites, 2-[3-(3-hydroxybenzoyl)phenyl]-propanoic acid, 2-[3-(4-hydroxybenzoyl)phenyl]-propanoic acid and 2-[3-(hydroxy(phenyl)methyl)phenyl]-propanoic acid, the latter formed by reduction of the ketone group of ketoprofen. In addition, two novel minor metabolites were identified as the ether glucuronides of 2-[3-(3-hydroxybenzoyl)phenyl]-propanoic acid and 2-[3-(4-hydroxybenzoyl)phenyl]-propanoic acid. These conjugates were all observed as diastereoisomeric pairs of unequal proportions. Purification of these metabolites by preparative chromatography allowed stereochemistry assignments. Metabolites were quantified by 1H-NMR spectroscopy after spectral simplification achieved by hydrolysis of the conjugates.


Subject(s)
Glucuronides/urine , Ketoprofen/administration & dosage , Ketoprofen/urine , Administration, Oral , Adult , Chromatography, High Pressure Liquid , Circular Dichroism , Female , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...