Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 14(1): 140, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31016407

ABSTRACT

AIM: To study whether water formulation of the complex of 4-thiazolidinone derivatives with a PEG-containing polymeric nanocarrier enhances their pro-apoptotic action towards rat glioma C6 cells. METHODS: Mechanisms of antineoplastic effects of 4-thiazolidinone derivatives were investigated in vitro with rat glioma C6 cells. Cell nativity, cell cycling pattern, and Annexin V expression were evaluated and DNA damage was estimated by DNA comet analysis. A novel water-based formulation of 4-thiazolidinone derivatives complexed with a polymeric nanocarrier was utilized for enhancing pro-apoptotic action towards C6 cells. RESULTS: The studied 4-thiazolidinone derivatives use apoptosis mechanisms for killing rat glioma C6 cells, as confirmed by FACS analysis of these cells in pre-G1 stage, the appearance of Annexin V positive C6 cells, and an increased number of DNA comets of higher classes. Complexation of the studied compounds with a PEG-containing polymeric nanocarrier significantly increased pro-apoptotic effects in rat glioma C6 cells measured by all methods mentioned above. CONCLUSION: Complexation of 4-thiazolidinone derivatives with a PEG-containing polymeric nanocarrier provided them with water solubility and enhanced pro-apoptotic effects in rat glioma C6 cells.

2.
J Biomed Nanotechnol ; 11(7): 1139-52, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26307837

ABSTRACT

Development of nanocarriers for effective drug delivery to molecular targets in tumor cells is a real problem in modern pharmaceutical chemistry. In the present work we used pristine C60 fullerene as a platform for delivery of anticancer drug doxorubicin (Dox) to its biological targets. The formation of a complex of C60 fullerene with Dox (C60 + Dox) is described and physico-chemical characteristics of such complex are presented. It was found that Dox conjugation with C60 fullerene leads to 1.5-2-fold increase in Dox toxicity towards various human tumor cell lines, compared with such effect when the drug is used alone. Cytotoxic activity of C60 + Dox complex is accompanied by an increased level of cell produced hydrogen peroxide at early time point (3 h) after its addition to cultured cells. At the same time, cellular production of superoxide radicals does not change in comparison with the effect of Dox alone. Cytomorphological studies have demonstrated that C60 + Dox complexes kill tumor cells by apoptosis induction. The results of in vivo experiments using Lewis lung carcinoma in mice confirmed the enhancement of the Dox toxicity towards tumor cells after drug complexation with C60 fullerene. The effect of such complex towards tumor-bearing mice was even more pronounced than that in the in vitro experiment with targeting human tumor cells. The tumor volume decreased by 2.5 times compared with the control, and an average life span of treated animals increased by 63% compared with control. The obtained results suggest a great perspective of application of C60 + Dox complexes for chemotherapy of malignant tumors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Doxorubicin/administration & dosage , Fullerenes/administration & dosage , Nanoconjugates/administration & dosage , Neoplasms, Experimental/drug therapy , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Fullerenes/chemistry , HL-60 Cells , Humans , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Nanoconjugates/chemistry , Nanoconjugates/ultrastructure , Neoplasms, Experimental/pathology , Particle Size , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...