Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Eng Math ; 144(1): 2, 2024.
Article in English | MEDLINE | ID: mdl-38077620

ABSTRACT

Gas flow through layers of porous materials plays a crucial role in technical applications, geology, petrochemistry, and space sciences (e.g., fuel cells, catalysis, shale gas production, and outgassing of volatiles from comets). In many applications the Knudsen regime is predominant, where the pore size is small compared to the mean free path between intermolecular collisions. In this context common parameters to describe the gas percolation through layers of porous media are the probability of gas molecule transmission and the Knudsen diffusion coefficient of the medium. We show how probabilistic considerations on layer partitions lead to the analytical description of the permeability of a porous medium to gas flow as a function of layer thickness. The derivations are made on the preconditions that the molecule reflection at pore surfaces is diffuse and that the pore structure is homogenous on a scale much larger than the pore size. By applying a bi-hemispherical Maxwell distribution, relations between the layer transmission probability, the half-transmission thickness, and the Knudsen diffusion coefficient are obtained. For packings of spheres, expressions of these parameters in terms of porosity and grain size are derived and compared with former standard models. A verification of the derived equations is given by means of numerical simulations, also providing evidence that our analytical model for sphere packing is more accurate than the former classical models.

2.
Space Sci Rev ; 216(8): 130, 2020.
Article in English | MEDLINE | ID: mdl-33184519

ABSTRACT

A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary gas and dust models have developed from the Halley encounter of 1986 to today. This includes the study of inhomogeneous outgassing and determination of the gas and dust production rates. Additionally, the different approaches used and results obtained to link coma data to the surface will be discussed. We discuss forward and inversion models and we describe the limitations of the respective approaches. The current literature suggests that there does not seem to be a single uniform process behind cometary activity. Rather, activity seems to be the consequence of a variety of erosion processes, including the sublimation of both water ice and more volatile material, but possibly also more exotic processes such as fracture and cliff erosion under thermal and mechanical stress, sub-surface heat storage, and a complex interplay of these processes. Seasons and the nucleus shape are key factors for the distribution and temporal evolution of activity and imply that the heliocentric evolution of activity can be highly individual for every comet, and generalisations can be misleading.

SELECTION OF CITATIONS
SEARCH DETAIL
...