Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 106(2-1): 024412, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109921

ABSTRACT

Plectonemes are intertwined helically looped domains which form when a DNA molecule is supercoiled, i.e., over- or underwound. They are ubiquitous in cellular DNA, and their physical properties have attracted significant interest both from the experimental side and from the modeling side. In this paper, we investigate fluctuations of the end-point distance z of supercoiled linear DNA molecules subject to external stretching forces. Our analysis is based on a two-phase model, which describes the supercoiled DNA as composed of a stretched phase and a plectonemic phase. A variety of mechanisms are found to contribute to extension fluctuations, characterized by the variance 〈Δz^{2}〉. We find the dominant contribution to 〈Δz^{2}〉 to originate from phase-exchange fluctuations, the transient shrinking and expansion of plectonemes, which is accompanied by an exchange of molecular length between the two phases. We perform Monte Carlo simulations of the twistable wormlike chain and analyze the fluctuation of various quantities, the results of which are found to agree with the two-phase model predictions. Furthermore, we show that the extension and its variance at high forces are very well captured by the two-phase model, provided that one goes beyond quadratic approximations.


Subject(s)
DNA, Superhelical , DNA , Monte Carlo Method , Nucleic Acid Conformation
2.
PNAS Nexus ; 1(5): pgac268, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36712371

ABSTRACT

DNA supercoiling is a key regulatory mechanism that orchestrates DNA readout, recombination, and genome maintenance. DNA-binding proteins often mediate these processes by bringing two distant DNA sites together, thereby inducing (transient) topological domains. In order to understand the dynamics and molecular architecture of protein-induced topological domains in DNA, quantitative and time-resolved approaches are required. Here, we present a methodology to determine the size and dynamics of topological domains in supercoiled DNA in real time and at the single-molecule level. Our approach is based on quantifying the extension fluctuations-in addition to the mean extension-of supercoiled DNA in magnetic tweezers (MT). Using a combination of high-speed MT experiments, Monte Carlo simulations, and analytical theory, we map out the dependence of DNA extension fluctuations as a function of supercoiling density and external force. We find that in the plectonemic regime, the extension variance increases linearly with increasing supercoiling density and show how this enables us to determine the formation and size of topological domains. In addition, we demonstrate how the transient (partial) dissociation of DNA-bridging proteins results in the dynamic sampling of different topological states, which allows us to deduce the torsional stiffness of the plectonemic state and the kinetics of protein-plectoneme interactions. We expect our results to further the understanding and optimization of magnetic tweezer measurements and to enable quantification of the dynamics and reaction pathways of DNA processing enzymes in the context of physiologically relevant forces and supercoiling densities.

4.
Phys Rev E ; 103(4-1): 042408, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34005944

ABSTRACT

We investigate the influence of nonlocal couplings on the torsional and bending elasticities of DNA. Such couplings have been observed in the past by several simulation studies. Here, we use a description of DNA conformations based on the variables tilt, roll, and twist. Our analysis of both coarse-grained (oxDNA) and all-atom models indicates that these share strikingly similar features: there are strong off-site couplings for tilt-tilt and twist-twist, while they are much weaker in the roll-roll case. By developing an analytical framework to estimate bending and torsional persistence lengths in nonlocal DNA models, we show how off-site interactions generate a length-scale-dependent elasticity. Based on the simulation-generated elasticity data, the theory predicts a significant length-scale-dependent effect on torsional fluctuations but only a modest effect on bending fluctuations. These results are in agreement with experiments probing DNA mechanics from single base pair to kilobase pair scales.


Subject(s)
Molecular Dynamics Simulation , Base Pairing , DNA , Elasticity
5.
J Chem Theory Comput ; 16(12): 7748-7763, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33164531

ABSTRACT

To study the elastic properties of rodlike DNA nanostructures, we perform long simulations of these structures using the oxDNA coarse-grained model. By analyzing the fluctuations in these trajectories, we obtain estimates of the bend and twist persistence lengths and the underlying bend and twist elastic moduli and couplings between them. Only on length scales beyond those associated with the spacings between the interhelix crossovers do the bending fluctuations behave like those of a wormlike chain. The obtained bending persistence lengths are much larger than that for double-stranded DNA and increase nonlinearly with the number of helices, whereas the twist moduli increase approximately linearly. To within the numerical error in our data, the twist-bend coupling constants are of order zero. That the bending persistence lengths that we obtain are generally somewhat higher than in experiment probably reflects both that the simulated origamis have no assembly defects and that the oxDNA extensional modulus for double-stranded DNA is too large.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation , Nanostructures/chemistry , Nucleic Acid Conformation
6.
J Chem Phys ; 150(13): 135101, 2019 Apr 07.
Article in English | MEDLINE | ID: mdl-30954045

ABSTRACT

By combining analytical results and simulations of various coarse-grained models, we investigate the minimal energy shape of DNA minicircles which are torsionally constrained by an imposed over or undertwist. We show that twist-bend coupling, a cross interaction term discussed in the recent DNA literature, induces minimal energy shapes with a periodic alternation of parts with high and low curvature resembling rounded polygons. We briefly discuss the possible experimental relevance of these findings. We finally show that the twist and bending energies of minicircles are governed by renormalized stiffness constants, rather than the bare ones. This has important consequences for the analysis of experiments involving circular DNA meant to determine DNA elastic constants.


Subject(s)
DNA/chemistry , Mechanical Phenomena , Nucleic Acid Conformation , Biomechanical Phenomena , Elasticity , Molecular Dynamics Simulation
7.
Phys Rev E ; 99(3-1): 032414, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30999490

ABSTRACT

The simplest model of DNA mechanics describes the double helix as a continuous rod with twist and bend elasticity. Recent work has discussed the relevance of a little-studied coupling G between twisting and bending, known to arise from the groove asymmetry of the DNA double helix. Here the effect of G on the statistical mechanics of long DNA molecules subject to applied forces and torques is investigated. We present a perturbative calculation of the effective torsional stiffness C_{eff} for small twist-bend coupling. We find that the "bare" G is "screened" by thermal fluctuations, in the sense that the low-force, long-molecule effective free energy is that of a model with G=0 but with long-wavelength bending and twisting rigidities that are shifted by G-dependent amounts. Using results for torsional and bending rigidities for freely fluctuating DNA, we show how our perturbative results can be extended to a nonperturbative regime. These results are in excellent agreement with numerical calculations for Monte Carlo "triad" and molecular dynamics "oxDNA" models, characterized by different degrees of coarse graining, validating the perturbative and nonperturbative analyses. While our theory is in generally good quantitative agreement with experiment, the predicted torsional stiffness does systematically deviate from experimental data, suggesting that there are as-yet-uncharacterized aspects of DNA twisting-stretching mechanics relevant to low-force, long-molecule mechanical response, which are not captured by widely used coarse-grained models.


Subject(s)
DNA , Models, Molecular , Models, Statistical , Algorithms , Biomechanical Phenomena , Computer Simulation , DNA/chemistry , Elasticity , Models, Chemical , Models, Genetic , Monte Carlo Method , Nucleic Acid Conformation , Torsion, Mechanical
8.
Phys Rev Lett ; 121(8): 088101, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30192578

ABSTRACT

Recent work indicates that twist-bend coupling plays an important role in DNA micromechanics. Here we investigate its effect on bent DNA. We provide an analytical solution of the minimum-energy shape of circular DNA, showing that twist-bend coupling induces sinusoidal twist waves. This solution is in excellent agreement with both coarse-grained simulations of minicircles and nucleosomal DNA data, which is bent and wrapped around histone proteins in a superhelical conformation. Our analysis shows that the observed twist oscillation in nucleosomal DNA, so far attributed to the interaction with the histone proteins, is an intrinsic feature of free bent DNA, and should be observable in other protein-DNA complexes.


Subject(s)
DNA/chemistry , Models, Chemical , Nucleosomes/chemistry , Computer Simulation , DNA/metabolism , DNA, Circular/chemistry , DNA, Circular/metabolism , Elasticity , Models, Molecular , Nucleic Acid Conformation , Nucleosomes/metabolism , Thermodynamics
9.
J Chem Phys ; 146(21): 214902, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28595422

ABSTRACT

It is well established that many physical properties of DNA at sufficiently long length scales can be understood by means of simple polymer models. One of the most widely used elasticity models for DNA is the twistable worm-like chain (TWLC), which describes the double helix as a continuous elastic rod with bending and torsional stiffness. An extension of the TWLC, which has recently received some attention, is the model by Marko and Siggia, who introduced an additional twist-bend coupling, expected to arise from the groove asymmetry. By performing computer simulations of two available versions of oxDNA, a coarse-grained model of nucleic acids, we investigate the microscopic origin of twist-bend coupling. We show that this interaction is negligible in the oxDNA version with symmetric grooves, while it appears in the oxDNA version with asymmetric grooves. Our analysis is based on the calculation of the covariance matrix of equilibrium deformations, from which the stiffness parameters are obtained. The estimated twist-bend coupling coefficient from oxDNA simulations is G=30±1 nm. The groove asymmetry induces a novel twist length scale and an associated renormalized twist stiffness κt≈80 nm, which is different from the intrinsic torsional stiffness C≈110 nm. This naturally explains the large variations on experimental estimates of the intrinsic stiffness performed in the past.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation , Elasticity
SELECTION OF CITATIONS
SEARCH DETAIL
...