Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 279: 116486, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38820877

ABSTRACT

Human exposure to radiofrequency electromagnetic fields (RF-EMF) is restricted to prevent thermal effects in the tissue. However, at very low intensity exposure "non-thermal" biological effects, like oxidative stress, DNA or chromosomal aberrations, etc. collectively termed genomic-instability can occur after few hours. Little is known about chronic (years long) exposure with non-thermal RF-EMF. We identified two neighboring housing estates in a rural region with residents exposed to either relatively low (control-group) or relatively high (exposed-group) RF-EMF emitted from nearby mobile phone base stations (MPBS). 24 healthy adults that lived in their homes at least for 5 years volunteered. The homes were surveyed for common types of EMF, blood samples were tested for oxidative status, transient DNA alterations, permanent chromosomal damage, and specific cancer related genetic markers, like MLL gene rearrangements. We documented possible confounders, like age, sex, nutrition, life-exposure to ionizing radiation (X-rays), occupational exposures, etc. The groups matched well, age, sex, lifestyle and occupational risk factors were similar. The years long exposure had no measurable effect on MLL gene rearrangements and c-Abl-gene transcription modification. Associated with higher exposure, we found higher levels of lipid oxidation and oxidative DNA-lesions, though not statistically significant. DNA double strand breaks, micronuclei, ring chromosomes, and acentric chromosomes were not significantly different between the groups. Chromosomal aberrations like dicentric chromosomes (p=0.007), chromatid gaps (p=0.019), chromosomal fragments (p<0.001) and the total of chromosomal aberrations (p<0.001) were significantly higher in the exposed group. No potential confounder interfered with these findings. Increased rates of chromosomal aberrations as linked to excess exposure with ionizing radiation may also occur with non-ionizing radiation exposure. Biological endpoints can be informative for designing exposure limitation strategies. Further research is warranted to investigate the dose-effect-relationship between both, exposure intensity and exposure time, to account for endpoint accumulations after years of exposure. As established for ionizing radiation, chromosomal aberrations could contribute to the definition of protection thresholds, as their rate reflects exposure intensity and exposure time.


Subject(s)
Cell Phone , Electromagnetic Fields , Genomic Instability , Oxidative Stress , Humans , Male , Female , Electromagnetic Fields/adverse effects , Germany , Adult , Middle Aged , Genomic Instability/radiation effects , Chromosome Aberrations , Environmental Exposure , Radio Waves/adverse effects , DNA Damage
2.
Sci Rep ; 13(1): 15525, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726322

ABSTRACT

Interventional radiologists are chronically exposed to low-dose ionizing radiation (IR), which may represent a health risk. The aim of the present study was to evaluate genomic instability by analyzing chromosomal aberrations, micronuclei, and 53BP1 DNA repair foci in peripheral blood lymphocytes of radiologists. Based on the IAEA guidelines on biodosimetry using dicentrics, the average protracted whole-body dose in radiologists were estimated. Since preleukemic fusion genes (PFG) are the primary events leading to leukemia, we also studied their presence by RT-qPCR and FISH. No significant difference in 53BP1 foci and incidence of PFG (MLL-AF4, MLL-AF9, AML1-ETO, BCR-ABL p190) was found in cells of interventional radiologists in comparison to controls. However, our results showed an increased frequency of micronuclei and various types of chromosomal aberrations including dicentrics in interventional radiologists. The average protracted whole body estimated dose was defined at 452.63 mGy. We also found a significantly higher amplification of the MLL gene segment and increased RNA expression in cells of interventional radiologists in comparison to controls. In conclusion, our results showed that long-term low-dose IR induces genomic instability in interventional radiologists.


Subject(s)
Genomic Instability , Radiology, Interventional , Humans , Chromosome Aberrations , DNA Repair , Radiation, Ionizing
3.
Int J Mol Sci ; 24(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37047553

ABSTRACT

Although the prevalence of leukemia is increasing, the agents responsible for this increase are not definitely known. While ionizing radiation (IR) was classified as a group one carcinogen by the IARC, the IR-induced cancers, including leukemia, are indistinguishable from those that are caused by other factors, so the risk estimation relies on epidemiological data. Several epidemiological studies on atomic bomb survivors and persons undergoing IR exposure during medical investigations or radiotherapy showed an association between radiation and leukemia. IR is also known to induce chromosomal translocations. Specific chromosomal translocations resulting in preleukemic fusion genes (PFGs) are generally accepted to be the first hit in the onset of many leukemias. Several studies indicated that incidence of PFGs in healthy newborns is up to 100-times higher than childhood leukemia with the same chromosomal aberrations. Because of this fact, it has been suggested that PFGs are not able to induce leukemia alone, but secondary mutations are necessary. PFGs also have to occur in specific cell populations of hematopoetic stem cells with higher leukemogenic potential. In this review, we describe the connection between IR, PFGs, and cancer, focusing on recurrent PFGs where an association with IR has been established.


Subject(s)
Leukemia , Neoplasms, Radiation-Induced , Infant, Newborn , Humans , Child , Translocation, Genetic , Neoplasms, Radiation-Induced/genetics , Neoplasms, Radiation-Induced/epidemiology , Leukemia/genetics , Chromosome Aberrations , Radiation, Ionizing
4.
Antioxidants (Basel) ; 10(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803739

ABSTRACT

Preleukemic fusion genes (PFGs) occurring after DNA damage in hematopoietic stem progenitor cells (HSPCs) in utero often represent the initial event in the development of childhood leukemia. While the incidence of PFGs characteristic for acute lymphoblastic leukemia (ALL) was relatively well examined by several research groups and estimated to be 1-5% in umbilical cord blood (UCB) of healthy newborns, PFGs that are relevant to acute myeloid leukemia (AML) were poorly investigated. Therefore, this study is focused on the estimation of the incidence of the most frequent AML PFGs in newborns. For the first time, this study considered the inducibility of AML PFGs in different subsets of UCB HSPCs by low-dose γ-rays and also compared endogenous DNA damage, apoptosis, and reactive oxygen species (ROS) level between UCB samples containing or lacking AML PFGs. We found that: (i) the incidence of AML PFGs in UCB was 3.19% for RUNX1-RUNX1T1, 3.19% for PML-RARα, and 1.17% for KMT2A-MLLT3, (ii) 50 cGy of γ-rays did not induce RUNX1-RUNX1T1, PML-RARα, or KMT2A-MLLT3 PFGs in different subsets of sorted and expanded HSPCs, and (iii) the AML PFG+ samples accumulated the same level of endogenous DNA damage, as measured by the γH2AX/53BP1 focus formation, and also the same ROS level, and apoptosis as compared to PFG- controls. Our study provides critical insights into the prevalence of AML PFGs in UCB of newborns, without the evidence of a specific HSPC population more susceptible for PFG formation after irradiation to low-dose γ-rays or increased amount of ROS, apoptosis and DNA damage.

5.
Environ Pollut ; 267: 115632, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254645

ABSTRACT

Different scientific reports suggested link between exposure to radiofrequency radiation (RF) from mobile communications and induction of reactive oxygen species (ROS) and DNA damage while other studies have not found such a link. However, the available studies are not directly comparable because they were performed at different parameters of exposure, including carrier frequency of RF signal, which was shown to be a critical for appearance of the RF effects. For the first time, we comparatively analyzed genotoxic effects of UMTS signals at different frequency channels used by 3G mobile phones (1923, 1947.47, and 1977 MHz). Genotoxicity was examined in human lymphocytes exposed to RF for 1 h and 3 h using complimentary endpoints such as induction of ROS by imaging flow cytometry, DNA damage by alkaline comet assay, mutations in TP53 gene by RSM assay, preleukemic fusion genes (PFG) by RT-qPCR, and apoptosis by flow cytometry. No effects of RF exposure on ROS, apoptosis, PFG, and mutations in TP53 gene were revealed regardless the UMTS frequency while inhibition of a bulk RNA expression was found. On the other hand, we found relatively small but statistically significant induction of DNA damage in dependence on UMTS frequency channel with maximal effect at 1977.0 MHz. Our data support a notion that each specific signal used in mobile communication should be tested in specially designed experiments to rule out that prolonged exposure to RF from mobile communication would induce genotoxic effects and affect the health of human population.


Subject(s)
Cell Phone , Apoptosis , DNA , DNA Damage , Humans , Lymphocytes , Oxidative Stress
6.
Sci Rep ; 10(1): 13722, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839487

ABSTRACT

There is clear evidence that ionizing radiation (IR) causes leukemia. For many types of leukemia, the preleukemic fusion genes (PFG), as consequences of DNA damage and chromosomal translocations, occur in hematopoietic stem and progenitor cells (HSPC) in utero and could be detected in umbilical cord blood (UCB) of newborns. However, relatively limited information is available about radiation-induced apoptosis, DNA damage and PFG formation in human HSPC. In this study we revealed that CD34+ HSPC compared to lymphocytes: (i) are extremely radio-resistant showing delayed time kinetics of apoptosis, (ii) accumulate lower level of endogenous DNA damage/early apoptotic γH2AX pan-stained cells, (iii) have higher level of radiation-induced 53BP1 and γH2AX/53BP1 co-localized DNA double stranded breaks, and (iv) after low dose of IR may form very low level of BCR-ABL PFG. Within CD34+ HSPC we identified CD34+CD38+ progenitor cells as a highly apoptosis-resistant population, while CD34+CD38- hematopoietic stem/multipotent progenitor cells (HSC/MPP) as a population very sensitive to radiation-induced apoptosis. Our study provides critical insights into how human HSPC respond to IR in the context of DNA damage, apoptosis and PFG.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , Fetal Blood/radiation effects , Gene Fusion/radiation effects , Hematopoietic Stem Cells/radiation effects , Leukemia/genetics , Antigens, CD34/metabolism , Apoptosis/radiation effects , DNA Repair/genetics , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/radiation effects , Gene Fusion/genetics , Histones/genetics , Histones/metabolism , Humans , Infant, Newborn , Lymphocytes/radiation effects , Preleukemia/genetics , Radiation, Ionizing , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
7.
Oncotarget ; 9(27): 19233-19244, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29721197

ABSTRACT

The first event in origination of many childhood leukemias is a specific preleukemic fusion gene (PFG) that arises, often in utero, in hematopoietic stem/progenitor cells (HSPC) from misrepaired DNA double strand break (DSB). An immanently elevated level of DSB and impaired apoptosis may contribute to origination and persistence of PFG and donor cell-derived leukemia in recipients of allogeneic transplantation of umbilical cord blood (UCB). We investigated DSB, apoptosis and PFG in the backtracked UCB cells of leukemic patients. RNA from UCB of three patients with acute lymphoblastic leukemia, patient with acute megakaryoblastic leukemia and Down syndrome, and four healthy children was screened for common PFG by RT-qPCR. Presence of PFG was validated by sequencing. Endogenous γH2AX and 53BP1 DNA repair foci, cell populations, and apoptosis were analyzed in UCB CD34+/- cells with imaging and standard flow cytometry. We found MLL2-AF4 and BCR-ABL (p190) fusion genes in UCB of two out from four pediatric patients, apparently not detected at diagnosis, while UCB cells of TEL-AML1+ ALL patient were tested negative for this PFG and no PFG were detected in UCB cells of healthy children. No significant difference in DNA damage and apoptosis between UCB CD34+/- cells from healthy children and leukemic patients was observed, while Down syndrome trisomy increased DNA damage and resulted in distribution of cell populations resembling transient abnormal myelopoiesis. Our findings indicate increased genetic instability in UCB HSPC of leukemic patients and may be potentially used for diagnostics and exclusion of possibly affected UCB from transplantation.

8.
Oncotarget ; 8(22): 35824-35834, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28415763

ABSTRACT

Despite widely accepted notion that many childhood leukemias are likely developed from hematopoietic stem/progenitor cells (HSPC) with pre-leukemic fusion genes (PFG) formed in embryonic/fetal development, the data on PFG incidence in newborns are contradictive. To provide a better understanding of a prenatal origin of leukemia, umbilical cord blood from 500 newborns was screened for the presence of the most frequent PFG associated with pediatric B-cell acute lymphoblastic leukemia. This screening revealed relatively high incidence of ETV6-RUNX1, BCR-ABL1 (p190) and MLL-AF4 at very low frequencies, averaging ~14 copies per 100,000 cells. We assume that most of these PFG might originate relatively late in embryonic/fetal development and will be eliminated later during postnatal development. The obtained results suggested that higher PFG copy numbers originating in specific time windows of the hematopoietic stem cell hierarchy may define a better prognostic tool for the assessment of leukemogenic potential. We have observed no significant effect of low-copy PFG on radiation-induced DNA damage response, accumulation of endogenous DNA double-stranded breaks, and apoptosis in either lymphocytes or HSPC. Imaging flow cytometry showed lower level of γH2AX foci in HSPC in comparison to lymphocytes suggesting better protection of HSPC from DNA damage.


Subject(s)
Cell-Free Nucleic Acids , DNA Damage , Fetal Blood , Gene Dosage , Oncogene Proteins, Fusion/genetics , Apoptosis/genetics , Apoptosis/radiation effects , DNA Damage/radiation effects , DNA Repair , Humans , Incidence , Infant, Newborn , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
9.
PLoS One ; 9(3): e91116, 2014.
Article in English | MEDLINE | ID: mdl-24621554

ABSTRACT

The first event in origination of many childhood leukemias is likely the presence of preleukemic clone (transformed hematopoietic stem/progenitor cells with preleukemic gene fusions (PGF)) in newborn. Thus, the screening of umbilical cord blood (UCB) for PGF may be of high importance for developing strategies for childhood leukemia prevention and treatment. However, the data on incidence of PGF in UCB are contradictive. We have compared multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (RT qPCR) in neonates from Slovak National Birth Cohort. According to multiplex PCR, all 135 screened samples were negative for the most frequent PGF of B-lineage acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). To explore the prevalence of prognostically important TEL-AML1, MLL-AF4 and BCR-ABL (p190), 200 UCB were screened using RT qPCR. The initial screening showed an unexpectedly high incidence of studied PGF. The validation of selected samples in two laboratories confirmed approximately » of UCB positive, resulting in ∼4% incidence of TEL-AML1, ∼6.25% incidence of BCR-ABL1 p190, and ∼0.75% frequency of MLL-AF4. In most cases, the PGF presented at very low level, about 1-5 copies per 105 cells. We hypothesize that low PGF numbers reflect their relatively late origin and are likely to be eliminated in further development while higher number of PGF reflects earlier origination and may represent higher risk for leukemia.


Subject(s)
Fetal Blood/metabolism , Gene Fusion/genetics , Leukemia/genetics , Precancerous Conditions/genetics , Cohort Studies , Core Binding Factor Alpha 2 Subunit/genetics , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia/diagnosis , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Real-Time Polymerase Chain Reaction , Slovakia
10.
Biochemistry ; 46(23): 7006-15, 2007 Jun 12.
Article in English | MEDLINE | ID: mdl-17506530

ABSTRACT

The influence of DNA base sequence context on the removal of a bulky benzo[a]pyrene diol epoxide-guanine adduct, (+)-trans-B[a]P-N2-dG (G*), by UvrABC nuclease from the thermophilic organism Bacillus caldotenax was investigated. The lesion was flanked by either T or C in otherwise identical complementary 43-mer duplexes (TG*T or CG*C, respectively). It was reported earlier that in the CG*C context, a dominant minor groove adduct structure was observed by NMR methods with all Watson-Crick base pairs intact, and the duplex exhibited a rigid bend. In contrast, in the TG*T context, a highly flexible bend was observed, base pairing at G*, and two 5'-base pairs flanking the adduct were impaired, and multiple solvent-accessible adduct conformations were observed. The TG*T-43-mer duplexes are incised with consistently greater efficiency by UvrABC proteins from B. caldotenax by a factor of 2.3 +/- 0.3. The rates of incisions increase with increasing temperature and are characterized by linear Arrhenius plots with activation energies of 27.0 +/- 1.5 and 23.4 +/- 1.0 kcal/mol for CG*C and TG*T duplexes, respectively. These values reflect the thermophilic characteristics of the UVrABC nuclease complex and the contributions of the different DNA substrates to the overall activation energies. These effects are consistent with base sequence context-dependent differences in structural disorder engendered by a loss of local base stacking interactions and Watson-Crick base pairing in the immediate vicinity of the lesions in the TG*T duplexes. The local weakening of base pairing interactions constitutes a recognition element of the UvrABC nucleotide excision repair apparatus.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry , DNA Adducts , DNA Repair , DNA/chemistry , Endodeoxyribonucleases/metabolism , Escherichia coli Proteins/metabolism , Base Sequence , Calorimetry , Kinetics , Molecular Sequence Data , Oligodeoxyribonucleotides/chemistry , Thermodynamics
11.
Biochemistry ; 45(25): 7834-43, 2006 Jun 27.
Article in English | MEDLINE | ID: mdl-16784235

ABSTRACT

Prokaryotic DNA repair nucleases are useful reagents for detecting DNA lesions. UvrABC endonuclease, encoded by the UvrA, UvrB, and UvrC genes can incise DNA containing bulky nucleotide adducts and intrastrand cross-links. UvrA, UvrB, and UvrC were cloned from Bacillus caldotenax (Bca)and UvrC from Thermatoga maritima (Tma), and recombinant proteins were overexpressed in and purified from Escherichia coli. Incision activities of UvrABC composed of all Bca-derived subunits (UvrABC(Bca)) and an interspecies combination UvrABC composed of Bca-derived UvrA and UvrB and Tma-derived UvrC (UvrABC(Tma)) were compared on benoz[a]pyrene-7,8-dihyrodiol-9,10-epoxide (BPDE)-adducted substrates. Both UvrABC(Bca) and UvrABC(Tma) specifically incised both BPDE-adducted plasmid DNAs and site-specifically modified 50-bp oligonucleotides containing a single (+)-trans- or (+)-cis-BPDE adduct. Incision activity was maximal at 55-60 degrees C. However, UvrABC(Tma) was more robust than UvrABC(Bca) with 4-fold greater incision activity on BPDE-adducted oligonucleotides and 1.5-fold greater on [(3)H]BPDE-adducted plasmid DNAs. Remarkably, UvrABC(Bca) incised only at the eighth phosphodiester bond 5' to the BPDE-modified guanosine. In contrast, UvrABC(Tma) performed dual incision, cutting at both the fifth phosphodiester bond 3' and eighth phosphodiester bond 5' from BPDE-modified guanosine. BPDE adduct stereochemistry influenced incision activity, and cis adducts on oligonucleotide substrates were incised more efficiently than trans adducts by both UvrABC(Bca) and UvrABC(Tma). UvrAB-DNA complex formation was similar with (+)-trans- and (+)-cis-BPDE-adducted substrates, suggesting that UvrAB binds both adducts equally and that adduct configuration modifies UvrC recognition of the UvrAB-DNA complex. The dual incision capabilities and higher incision activity of UvrABC(Tma) make it a robust tool for DNA adduct studies.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/metabolism , Bacillus/enzymology , DNA Adducts/metabolism , DNA Repair/physiology , Endodeoxyribonucleases/metabolism , Escherichia coli Proteins/metabolism , Thermotoga maritima/enzymology , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry , Amino Acid Sequence , DNA Adducts/chemistry , DNA Helicases/genetics , DNA Helicases/metabolism , Endodeoxyribonucleases/genetics , Enzyme Stability , Escherichia coli Proteins/genetics , Hot Temperature , Molecular Sequence Data , Plasmids/metabolism , Recombinant Proteins/metabolism , Sequence Alignment
12.
J Biol Chem ; 281(22): 15227-37, 2006 Jun 02.
Article in English | MEDLINE | ID: mdl-16595666

ABSTRACT

UvrB, a central DNA damage recognition protein in bacterial nucleotide excision repair, has weak affinity for DNA, and its ATPase activity is activated by UvrA and damaged DNA. Regulation of DNA binding and ATP hydrolysis by UvrB is poorly understood. Using atomic force microscopy and biochemical assays, we found that truncation of domain 4 of Bacillus caldotenax UvrB (UvrBDelta4) leads to multiple changes in protein function. Protein dimerization decreases with an approximately 8-fold increase of the equilibrium dissociation constant and an increase in DNA binding. Loss of domain 4 causes the DNA binding mode of UvrB to change from dimer to monomer, and affinity increases with the apparent dissociation constants on nondamaged and damaged single-stranded DNA decreasing 22- and 14-fold, respectively. ATPase activity by UvrBDelta4 increases 14- and 9-fold with and without single-stranded DNA, respectively, and UvrBDelta4 supports UvrA-independent damage-specific incision by Cho on a bubble DNA substrate. We propose that other than its previously discovered role in regulating protein-protein interactions, domain 4 is an autoinhibitory domain regulating the DNA binding and ATPase activities of UvrB.


Subject(s)
Adenosine Triphosphatases/metabolism , Bacterial Proteins/metabolism , DNA Repair , DNA, Bacterial/metabolism , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Bacillus/genetics , Bacillus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , DNA Damage , DNA, Bacterial/genetics , Dimerization , Kinetics , Models, Biological , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
13.
Nucleic Acids Res ; 33(7): 2181-91, 2005.
Article in English | MEDLINE | ID: mdl-15831791

ABSTRACT

Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa-spermine cross-link adducts (Oxa-Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa-Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2-9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa-Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa-Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage.


Subject(s)
DNA Repair Enzymes/metabolism , DNA Repair , Nitric Oxide/toxicity , Purine Nucleosides/metabolism , Spermine/metabolism , Base Sequence , Cell Extracts , DNA Adducts/metabolism , DNA Damage , DNA Glycosylases/metabolism , Endodeoxyribonucleases/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , HeLa Cells , Humans , Molecular Sequence Data , Oligonucleotides/chemistry , Oligonucleotides/metabolism
14.
EMBO J ; 24(5): 885-94, 2005 Mar 09.
Article in English | MEDLINE | ID: mdl-15692561

ABSTRACT

Nucleotide excision repair is a highly conserved DNA repair mechanism present in all kingdoms of life. The incision reaction is a critical step for damage removal and is accomplished by the UvrC protein in eubacteria. No structural information is so far available for the 3' incision reaction. Here we report the crystal structure of the N-terminal catalytic domain of UvrC at 1.5 A resolution, which catalyzes the 3' incision reaction and shares homology with the catalytic domain of the GIY-YIG family of intron-encoded homing endonucleases. The structure reveals a patch of highly conserved residues surrounding a catalytic magnesium-water cluster, suggesting that the metal binding site is an essential feature of UvrC and all GIY-YIG endonuclease domains. Structural and biochemical data strongly suggest that the N-terminal endonuclease domain of UvrC utilizes a novel one-metal mechanism to cleave the phosphodiester bond.


Subject(s)
DNA Repair/physiology , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Amino Acid Sequence , Bacillus/enzymology , Bacillus/genetics , Catalytic Domain/genetics , Cations, Divalent/metabolism , Conserved Sequence , Crystallography, X-Ray , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Endodeoxyribonucleases/genetics , Escherichia coli Proteins , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Static Electricity
15.
Aging Cell ; 3(6): 399-411, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15569357

ABSTRACT

Telomerase is often re-activated in human cancers and is widely used to immortalize cells in culture. In addition to the maintenance of telomeres, telomerase has been implicated in cell proliferation, genomic instability and apoptosis. Here we show that human telomerase reverse transcriptase (hTERT) is targeted to the mitochondria by an N-terminal leader sequence, and that mitochondrial extracts contain telomerase activity. In seven different human cell lines, mitochondrial telomerase increases hydrogen-peroxide-mediated mitochondrial DNA damage. hTERT expression did not alter the rate of hydrogen peroxide breakdown or endogenous cellular levels. Because the damaging effects of hydrogen peroxide are mediated by divalent metal ions (Fenton chemistry), we examined the levels of bioavailable metals. In all cases, higher levels of chelatable metals were found in hTERT-expressing cells. These results suggest that mitochondrial telomerase sensitizes cells to oxidative stress, which can lead to apoptotic cell death, and imply a novel function of telomerase in mitochondrial DNA transactions.


Subject(s)
DNA Damage/drug effects , DNA, Mitochondrial/drug effects , Mitochondria/metabolism , Telomerase/metabolism , Algorithms , Amino Acid Sequence , Cell Death/drug effects , Cell Line , DNA, Mitochondrial/metabolism , DNA-Binding Proteins , Free Radicals/metabolism , HeLa Cells , Humans , Hydrogen Peroxide/pharmacology , Molecular Sequence Data , Sensitivity and Specificity , Telomerase/genetics
16.
J Biol Chem ; 279(49): 51574-80, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15456749

ABSTRACT

The UvrB protein is the central recognition protein in bacterial nucleotide excision repair. We have shown previously that the highly conserved beta-hairpin motif in Bacillus caldotenax UvrB is essential for DNA binding, damage recognition, and UvrC-mediated incision, as deletion of the upper part of the beta-hairpin (residues 97-112) results in the inability of UvrB to be loaded onto damaged DNA, defective incision, and the lack of strand-destabilizing activity. In this work, we have further examined the role of the beta-hairpin motif of UvrB by a mutational analysis of 13 amino acids within or in the vicinity of the beta-hairpin. These amino acids are predicted to be important for the interaction of UvrB with both damaged and non-damaged DNA strands as well as the formation of salt bridges between the beta-hairpin and domain 1b of UvrB. The resulting mutants were characterized by standard functional assays such as oligonucleotide incision, electrophoretic mobility shift, strand-destabilizing, and ATPase assays. Our data indicated a direct role of Tyr96, Glu99, and Arg123 in damage-specific DNA binding. In addition, Tyr93 plays an important but less essential role in DNA binding by UvrB. Finally, the formation of salt bridges between the beta-hairpin and domain 1b, involving amino acids Lys111 bound to Glu307 and Glu99 bound to Arg367 or Arg289, are important but not essential for the function of UvrB.


Subject(s)
DNA Helicases/chemistry , DNA Helicases/genetics , DNA/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Amino Acid Motifs , Bacillus/genetics , Bacillus/metabolism , Base Sequence , Binding Sites , Cholesterol/chemistry , DNA Damage , DNA Helicases/metabolism , DNA Repair , Escherichia coli Proteins/metabolism , Glutamic Acid/chemistry , Hydrolysis , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Oligonucleotides/chemistry , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Tyrosine/chemistry
17.
J Biol Chem ; 279(43): 45245-56, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15308661

ABSTRACT

To better define the molecular architecture of nucleotide excision repair intermediates it is necessary to identify the specific domains of UvrA, UvrB, and UvrC that are in close proximity to DNA damage during the repair process. One key step of nucleotide excision repair that is poorly understood is the transfer of damaged DNA from UvrA to UvrB, prior to incision by UvrC. To study this transfer, we have utilized two types of arylazido-modified photoaffinity reagents that probe residues in the Uvr proteins that are closest to either the damaged or non-damaged strands. The damaged strand probes consisted of dNTP analogs linked to a terminal arylazido moiety. These analogs were incorporated into double-stranded DNA using DNA polymerase beta and functioned as both the damage site and the cross-linking reagent. The non-damaged strand probe contained an arylazido moiety coupled to a phosphorothioate-modified backbone of an oligonucleotide opposite the damaged strand, which contained an internal fluorescein adduct. Six site-directed mutants of Bacillus caldotenax UvrB located in different domains within the protein (Y96A, E99A, R123A, R183E, F249A, and D510A), and two domain deletions (Delta2 and Deltabeta-hairpin), were assayed. Data gleaned from these mutants suggest that the handoff of damaged DNA from UvrA to UvrB proceeds in a three-step process: 1) UvrA and UvrB bind to the damaged site, with UvrA in direct contact; 2) a transfer reaction with UvrB contacting mostly the non-damaged DNA strand; 3) lesion engagement by the damage recognition pocket of UvrB with concomitant release of UvrA.


Subject(s)
Adenosine Triphosphatases/physiology , DNA Helicases/chemistry , DNA-Binding Proteins/physiology , DNA/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/physiology , Adenosine Triphosphatases/chemistry , Bacillus/metabolism , Base Sequence , Cross-Linking Reagents/pharmacology , DNA/radiation effects , DNA Damage , DNA Polymerase beta/chemistry , DNA-Binding Proteins/chemistry , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Light , Models, Chemical , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Oligonucleotides/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Time Factors
18.
EMBO J ; 23(13): 2498-509, 2004 Jul 07.
Article in English | MEDLINE | ID: mdl-15192705

ABSTRACT

Nucleotide excision repair (NER) is a highly conserved DNA repair mechanism present in all kingdoms of life. UvrB is a central component of the bacterial NER system, participating in damage recognition, strand excision and repair synthesis. None of the three presently available crystal structures of UvrB has defined the structure of domain 2, which is critical for the interaction with UvrA. We have solved the crystal structure of the UvrB Y96A variant, which reveals a new fold for domain 2 and identifies highly conserved residues located on its surface. These residues are restricted to the face of UvrB important for DNA binding and may be critical for the interaction of UvrB with UvrA. We have mutated these residues to study their role in the incision reaction, formation of the pre-incision complex, destabilization of short duplex regions in DNA, binding to UvrA and ATP hydrolysis. Based on the structural and biochemical data, we conclude that domain 2 is required for a productive UvrA-UvrB interaction, which is a pre-requisite for all subsequent steps in nucleotide excision repair.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , DNA Damage , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA Repair , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Bacillus/chemistry , Bacillus/metabolism , Bacterial Proteins/genetics , Chromatography, Gel , Conserved Sequence , Crystallography, X-Ray , DNA Helicases/genetics , Electrophoretic Mobility Shift Assay , GTP Phosphohydrolases/metabolism , Genetic Variation , Hydrogen Bonding , Models, Chemical , Models, Molecular , Molecular Sequence Data , Point Mutation , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Spectrum Analysis, Raman , Substrate Specificity
19.
Chem Res Toxicol ; 17(3): 330-9, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15025503

ABSTRACT

The highly reactive and mutagenic benzo[a]pyrene metabolite, (+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), forms predominantly N2-deoxyguanine DNA adducts in two stereoisomeric configurations (cis and trans). In previous in vitro assays using oligonucleotide substrates site specifically modified with cis- and trans-BPDE adducts, the nucleotide excision repair (NER) systems of eukaryotes and prokaryotes incise cis-BPDE adducts more efficiently than trans-BPDE adducts [Hess, et al. (1997) Mol. Cell Biol 17, 7069; Zou, et al. (2001) Biochemistry 40, 2923). We investigated the influence of DNA secondary structure on stereospecificity of BPDE adduct formation, and incision of BPDE adducts by the prokaryotic UvrABC NER endonuclease was examined. BPDE adducts formed at low density on supercoiled plasmids were incised 6-7-fold better by the thermoresistant Bacillus caldotenaxUvrABC than were BPDE adducts formed on linear DNA. Linearizing supercoiled plasmid DNAs after BPDE adduct formation did not diminish incision efficiency. These results suggested that configuration and/or conformation of adducts formed on linear and supercoiled DNAs differed. This hypothesis was confirmed by low temperature fluorescence spectroscopy of adducted supercoiled and linear DNAs. Spectroscopic results indicated that intercalated cis-BPDE adducts as well as base-stacked trans-BPDE adducts formed more abundantly in supercoiled DNA than in linear DNA. A higher cis to trans adduct ratio in supercoiled DNA was confirmed by high resolution [32P]postlabeling analyses. These results demonstrate that DNA secondary structure influences both configuration and conformation of BPDE adducts formed at low density (approximately 1 adduct/kbp) and suggests that the ratio of cis- to trans-BPDE adducts and amount of base-stacked trans adducts formed under physiological exposure conditions may be higher than inferred from high dose experiments.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/analogs & derivatives , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry , DNA Adducts/chemistry , DNA, Superhelical/chemistry , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/chemistry , Intercalating Agents/chemistry , Mutagens/chemistry , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Deoxyguanosine/metabolism , Deoxyguanosine/toxicity , Mutagens/toxicity , Oligonucleotide Probes/chemistry
20.
Protein Expr Purif ; 31(1): 88-98, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12963345

ABSTRACT

Prokaryotic DNA repair nucleases are useful reagents for detecting DNA lesions. Escherichia coli UvrABC endonuclease can incise DNA containing UV photoproducts and bulky chemical adducts. The limited stability of the E. coli UvrABC subunits leads to difficulty in estimating incision efficiency and quantitative adduct detection. To develop a more stable enzyme with greater utility for the detection of DNA adducts, thermoresistant UvrABC endonuclease was cloned from the eubacterium Bacillus caldotenax (Bca) and individual recombinant protein subunits were overexpressed in and purified from E. coli. Here, we show that Bca UvrC that had lost activity or specificity could be restored by dialysis against buffer containing 500 mM KCl and 20mM dithiothreitol. Our data indicate that UvrC solubility depended on high salt concentrations and UvrC nuclease activity and the specificity of incisions depended on the presence of reduced sulfhydryls. Optimal conditions for BCA UvrABC-specific cleavage of plasmid DNAs treated with [3H](+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) (1-5 lesions/plasmid) were developed. Preincubation of substrates with UvrA and UvrB enhanced incision efficiency on damaged substrates and decreased non-specific nuclease activity on undamaged substrates. Under optimal conditions for damaged plasmid incision, approximately 70% of adducts were incised in 1 nM plasmid DNA (2 BPDE adducts/5.4 kbp plasmid) with UvrA at 2.5 nM, UvrB at 62.5 nM, and UvrC at 25 nM. These results demonstrate the potential usefulness of the Bca UvrABC for monitoring the distribution of chemical carcinogen-induced lesions in DNA.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry , Bacillus/enzymology , DNA Adducts/metabolism , Endodeoxyribonucleases/metabolism , Escherichia coli Proteins/metabolism , Recombinant Proteins/metabolism , Sulfhydryl Compounds/metabolism , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/analysis , Bacillus/genetics , Chitin/chemistry , Chromatography, Liquid , Cloning, Molecular , DNA Adducts/analysis , DNA Adducts/chemistry , DNA Damage , DNA Helicases/biosynthesis , DNA Helicases/genetics , DNA Helicases/isolation & purification , DNA Repair , DNA, Superhelical/chemistry , Deoxyribonucleases/metabolism , Dithiothreitol/chemistry , Electrophoresis, Agar Gel , Electrophoresis, Polyacrylamide Gel , Endodeoxyribonucleases/biosynthesis , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/isolation & purification , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Gene Expression Regulation, Bacterial/drug effects , Genetic Vectors/genetics , Hot Temperature , Isopropyl Thiogalactoside/pharmacology , Nucleic Acid Conformation/drug effects , Plasmids/analysis , Plasmids/chemistry , Plasmids/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Spectrometry, Fluorescence , Substrate Specificity , Sulfhydryl Compounds/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...