Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37765312

ABSTRACT

The process of isothermal and non-isothermal physical ageing of amorphous polylactide (PLA) with the active pharmaceutical ingredient, indapamide (IND), was investigated. A PLA-IND system with a 50/50 weight ratio was obtained and characterized using differential scanning calorimetry (DSC). In the 50/50 (w/w) mixture, two glass transitions were observed: the first at 64.1 ± 0.3 °C corresponding to the glass transition temperature (Tg) of PLA, and the second at 102.6 ± 1.1 °C corresponding to the Tg of IND, indicating a lack of molecular mixing between the two ingredients. The PLA-IND system was subjected to the isothermal physical ageing process at different ageing temperatures (Ta) for 2 h. It was observed that the highest effect of physical ageing (enthalpy relaxation change) on IND in the PLA-IND system occurred at Ta = 85 °C. Furthermore, the system was annealed for various ageing times at 85 °C. The relaxation enthalpies were estimated for each experiment and fitted to the Kohlrausch-Williams-Watts (KWW) equation. The KWW equation allowed for the estimation of the relaxation time and the parameter describing the distribution of relaxation times of the isothermal physical ageing process of IND in the PLA-IND system. The physical ageing of the PLA-IND mixture (50/50) was also discussed in the context of heat capacity. Moreover, the activation energy and fragility parameters were determined for the PLA-IND (50/50) system.

2.
Int J Biol Macromol ; 245: 125544, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37356682

ABSTRACT

The polymeric cytisine-enriched fibers based on poly(3-hydroxybutyrate) were obtained using electrospinning method. The biocompatibility study, advanced thermal analysis and release of cytisine from the poly(3-hydroxybutyrate) fibers were carried out. The nanofibers' morphology was evaluated by scanning electron microscopy. The formation and description of phases during the thermal processes of fibers by the advanced thermal analysis were examined. The new quantitative thermal analysis of polymeric fibers with cytisine phases based on vibrational, solid and liquid heat capacities was presented. The apparent heat capacity of fibers was measured using the standard differential scanning calorimetry. The quantitative analysis allowed for the study of the glass transition and melting/crystallization process. The mobile amorphous fraction, degree of crystallinity and rigid amorphous fraction were determined depending on the thermal history of semicrystalline polymeric fibers. Furthermore, the cytisine dissolution behaviour was studied. It was observed that the kinetic of the release from polymeric nanofiber is delayed than for the marketed product. The immunosafety of the tested polymeric nanofibers with cytisine was confirmed by the Food and Drug Agency Guidance as well as the European Medicines Agency. The polymeric matrix with cytisine seems to be a promising candidate for the prolonged release formulation.


Subject(s)
Nanofibers , Polymers , Delayed-Action Preparations/chemistry , 3-Hydroxybutyric Acid , Polymers/chemistry , Nanofibers/chemistry , Calorimetry, Differential Scanning
3.
Eur J Pharm Sci ; 183: 106397, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36736465

ABSTRACT

The characterization of cytisine (CYT) and its blends with poly(lactic acid) was performed using thermal analysis, elemental analysis, infrared spectroscopy, and powder X-ray diffractometry. The heat capacities, total enthalpy, and phase transitions of CYT were established from 1.8 to 448.15 K (-271.35 - 175 °C) by advanced thermal analysis. Data were obtained using a Quantum Design Physical Property Measurement System (PPMS) and a differential scanning calorimetry (DSC). The low-temperature heat capacity of the crystalline CYT in the range of 1.8 to 300 K (-271.35 - 26.86 °C) was measured by PPMS and fitted to a theoretical model in the low temperature region below 11 K (-262.15 °C), to orthogonal polynomials in the middle range 5 K < T < 60 K (-268.15 °C < t < -213.15 °C) and to the Debye and Einstein functions in the high range of temperature above 60 K (-213.15 °C). The liquid heat capacity was calculated based on the approximated linear regression data above the molten state of the experimental heat capacity of CYT obtained by the standard DSC measurements, and it was expressed as Cpliquid = 0.0838T + 346.78 J·K-1·mol-1. The calculated heat capacity in the solid state was extended to a higher temperature and was used, together with liquid heat capacity, as the reference baselines for the advanced thermal analysis of CYT. The PPMS and DSC/TMDSC methods are complementary methods for thermal analysis of cytisine. The PPMS method allowed determination of the equilibrium heat capacity in the solid state, which together with the equilibrium heat capacity in the liquid state allowed to analyze of the experimental apparent heat capacity of cytisine obtained based on DSC. The melting temperature and the total heat of fusion of crystalline material were established as 431.8 K (158.65 °C) and 26.5 kJ·mol-1, respectively. The solid and liquid heat capacities and transition parameters of CYT were applied to calculate total enthalpies for fully amorphous and crystalline states. Analyses of DSC and X-ray confirmed the presence of the solid-solid transition linking with not so far described a polymorphism phenomenon of CYT. Based on the thermogravimetric analysis the temperature of degradation of CYT was determined as 460.5 K (187.35 °C). Also, a preliminary thermal analysis of the blends of cytisine and poly(lactic acid) as a new candidate for drug delivery system was presented.


Subject(s)
Hot Temperature , Smoking Cessation , Pharmaceutical Preparations , Temperature , Calorimetry, Differential Scanning
4.
J Pharm Biomed Anal ; 217: 114822, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35550491

ABSTRACT

The thermal behaviour of crystalline and amorphous carvedilol (CAR) phases was studied by advanced thermal analysis using Quantum Design Physical Property Measurement System and Differential Scanning Calorimetry. Theoretical functions describing crystalline carvedilol heat capacity at low temperatures and the Debye-Einstein function for high temperatures were obtained. Based on the experimental heat capacity values, solid and liquid baselines were established, and the state functions (H, S, G) for solid and liquid states were calculated. A comprehensive characterization of melting and glass transition processes was obtained. CAR is easily amorphizable by cooling the liquid. The residual entropy, which quantifies the extent of frozen-in disorder in the amorphous solid, for glassy CAR was estimated as 51 J·mol-1·K-1. The Kauzmann temperature (TK) was estimated based on enthalpy and entropy. Molecular motions in the amorphous phase were also studied. The activation energy for structural relaxation (Ea = 539 kJ·mol-1) and fragility parameter (m = 91) were obtained from the non-isothermal physical ageing. The isothermal physical ageing kinetics of amorphous CAR was studied by applying Kohlrausch-Williams-Watts (KWW) model. The mean molecular relaxation time constant (τKWW = 117 min) and relaxation constant (ßKWW = 0.33) were obtained. CAR was classified as a fragile glass-former. Furthermore, τKWW constant for samples aged at 303.15 K is very low, thus, the physical ageing will occur during the short- and long-term storage of amorphous CAR, potentially changing its physicochemical properties during the ageing process. However, the results of molecular mobility studies (high molecular motions) show that the relationship between molecular motions in a glassy solid and its tendency to crystallization does not seem to follow an expected pattern, i.e., no crystallization occurred by thermal treatment of glassy, supercooled liquid and liquid phases of CAR as one would expect. Modern calorimetry and quantitative thermal analysis provided the fundamental kinetic and thermodynamic information about the crystalline and amorphous states of CAR.


Subject(s)
Carvedilol , Calorimetry, Differential Scanning , Crystallization , Phase Transition , Thermodynamics
5.
Solid State Nucl Magn Reson ; 118: 101783, 2022 04.
Article in English | MEDLINE | ID: mdl-35247851

ABSTRACT

Irbesartan (IRB) is an antihypertensive drug which exhibits the rare phenomenon of desmotropy; its 1H- and 2H- tetrazole tautomers can be isolated as distinct crystalline forms. The crystalline forms of IRB are poorly soluble, hence the amorphous form is potentially of interest for its faster dissolution rate. The tautomeric form and the nature of hydrogen bonding in amorphous IRB are unknown. In this study, crystalline form A and amorphous form of irbesartan were studied using 13C, 15N and 1H solid-state NMR. Variable-temperature 13C SSMNR studies showed alkyl chain disorder in the crystalline form of IRB, which may explain the conflicting literature crystal structures of form A (the marketed form). 15N NMR indicates that the amorphous material contains an approximately 2:1 ratio of 1H- and 2H-tetrazole tautomers. Static 1H SSNMR and relaxation time measurements confirmed different molecular mobilities of the samples and provided molecular-level insight into the nature of the glass transition. SSNMR is shown to be a powerful technique to investigate the solid state of disordered active pharmaceutical ingredients.


Subject(s)
Magnetic Resonance Imaging , Tetrazoles , Hydrogen Bonding , Irbesartan , Magnetic Resonance Spectroscopy/methods
6.
Pharmaceutics ; 13(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34959406

ABSTRACT

Salt preparation via a solid-state reaction offers a solution to challenges posed by current pharmaceutical research, which include combining development of novel forms of active pharmaceutical ingredients with greener, sustainable synthesis. This work investigated in detail the mechanism of salt formation between propranolol (PRO) and capric acid (CAP) and explored the solid eutectic phases comprising this salt, propranolol caprate (PRC). The salt structure was solved by X-ray diffraction, and the properties in the crystalline and supercooled states were fully characterised using thermal analysis, nuclear magnetic resonance, Fourier-transform infrared spectroscopy and broadband dielectric spectroscopy (BDS). PRC forms via a submerged eutectic phase composed of PRO and CAP, below room temperature, by mechanochemistry without an extra input of energy. Two other solid eutectic phases are composed of PRC and either CAP or PRO, at 0.28 and 0.82 mol fraction of PRO, respectively. BDS indicated that the supercooled PRC has ionic character, whereas the supercooled PRC-PRO eutectic had predominantly non-ionic properties despite comprising the salt. In conclusion, knowledge of the mechanism of formation of multicomponent systems can help in designing more sustainable pharmaceutical processes.

7.
Pharmaceutics ; 13(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477672

ABSTRACT

The aim of this study was to characterize a 1:1 molar ratio of a pharmacologically relevant co-amorphous atorvastatin-irbesartan (ATR-IRB) system obtained by quench cooling of the crystalline ATR/IRB physical mixture for potential use in the fixed-dose combination therapy. The system was characterized by employing standard differential scanning calorimetry (DSC), Fourier transform-infrared spectroscopy (FT-IR), and intrinsic dissolution rate studies. Quantum mechanical calculations were performed to obtain information regarding intermolecular interactions in the studied co-amorphous ATR-IRB system. The co-amorphous formulation showed a significant improvement in the intrinsic dissolution rate (IDR) of IRB over pure crystalline as well as its amorphous counterpart. An unusual behavior was observed for ATR, as the IDR of ATR in the co-amorphous formulation was slightly lower than that of amorphous ATR alone. Short-term physical aging studies of up to 8 h proved that the ATR-IRB co-amorphous system remained in the amorphous form. Furthermore, no physical aging occurred in the co-amorphous system. FT-IR, density functional theory calculations, and analysis of T g value of co-amorphous system using the Couchman-Karasz equation revealed the presence of molecular interactions between APIs, which may contribute to the increased physical stability.

8.
Pharmaceutics ; 12(9)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854214

ABSTRACT

The objective of this study was to characterise amorphous indapamide (IND) subjected to the physical ageing process by differential scanning calorimetry (DSC). The amorphous indapamide was annealed at different temperatures below the glass transition, i.e., 35, 40, 45, 65, 75 and 85 °C for different lengths of time, from 30 min up to a maximum of 32 h. DSC was used to characterise both the crystalline and the freshly prepared glass and to monitor the extent of relaxation at temperatures below the glass transition (Tg). No ageing occurred at 35, 40 and 45 °C at the measured lengths of times. Molecular relaxation time constants (τKWW) for samples aged at 65, 75 and 85 °C were determined by the Kohlrausch-Williams-Watts (KWW) equation. The fragility parameter m (a measure of the stability below the glass transition) was determined from the Tg dependence from the cooling and heating rates, and IND was found to be relatively stable ("moderately fragile") in the amorphous state. Temperature-modulated DSC was used to separate reversing and nonreversing processes for unaged amorphous IND. The enthalpy relaxation peak was clearly observed as a part of the nonreversing signal. Heat capacities data for unaged and physically aged IND were fitted to Cp baselines of solid and liquid states of IND, were integrated and enthalpy was presented as a function of temperature.

9.
Pharmaceutics ; 12(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316479

ABSTRACT

Ionic liquids (ILs) and deep eutectic mixtures (DEMs) are potential solutions to the problems of low solubility, polymorphism, and low bioavailability of drugs. The aim of this work was to develop and investigate ketoprofen (KET)-based ILs/DEMs containing an ester local anesthetic (LA): benzocaine (BEN), procaine (PRO) and tetracaine (TET) as the second component. ILs/DEMs were prepared via a mechanosynthetic process that involved the mixing of KET with an LA in a range of molar ratios and applying a thermal treatment. After heating above the melting point and quench cooling, the formation of supercooled liquids with Tgs that were dependent on the composition was observed for all KET-LA mixtures with exception of that containing 95 mol% of BEN. The KET-LA mixtures containing either ≥ 60 mol% BEN or 95 mol% of TET showed crystallization to BEN and TET, respectively, during either cooling or second heating. KET decreased the crystallization tendency of BEN and TET and increased their glass-forming ability. The KET-PRO systems showed good glass-forming ability and did not crystallize either during the cooling or during the second heating cycle irrespective of the composition. Infrared spectroscopy and molecular modeling indicated that KET and LAs formed DEMs, but in the KET-PRO systems small quantities of carboxylate anions were present.

10.
J Biomater Appl ; 33(1): 140-155, 2018 07.
Article in English | MEDLINE | ID: mdl-29874966

ABSTRACT

Aims After oral administration, naproxen generates several side-effects related to stomach malfunction. Undoubtedly, the enteric dosage forms with naproxen can be considered as safer. Moreover, since it has been evidenced that development and growth of colorectal cancer is related to the presence of cyclooxygenase, naproxen is investigated in terms of the tumor prevention. The aim of the present work was to formulate and evaluate the properties of novel naproxen-loaded macrobeads, made on the basis of low-acyl gellan gum and its blends with carrageenans, guar gum, cellulose sulfate, and dextran sulfates. Method Seven formulations were prepared by ionotropic gelation. The morphology of the dried beads was evaluated by scanning electron microscopy. The next step focused on Raman spectroscopy and thermal analysis of naproxen, polymers, and the beads. Next, the swelling behavior was examined in three acceptor fluids at pH = 1.2; 4.5, and 7.4. The beads were evaluated regarding naproxen content and encapsulation efficiency. The last stage of the work concerned the drug release studies. Results Addition of any other polysaccharide than gellan resulted in flattening of the beads upon drying. Differential scanning calorimetry confirmed the crystalline form of naproxen. Raman spectra showed that no apparent interactions occurred. In the acidic environment, all the beads revealed the tendency to absorb water. The beads swelled to the greatest extent at pH = 4.5. Naproxen was released from the beads at a varied rate. At pH = 7.4, the most prolonged release was observed for the beads containing carrageenans. Conclusions We have proved that blending of gellan with various polysaccharides can change the pH-dependent properties of the beads loaded with naproxen. We believe that the information enclosed in the paper will be of particular importance regarding the development and characteristics of novel oral dosage forms based on natural polymers.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anticarcinogenic Agents/chemistry , Drug Carriers/chemistry , Naproxen/chemistry , Polysaccharides, Bacterial/chemistry , Carrageenan/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Chemistry, Pharmaceutical/methods , Dextran Sulfate/chemistry , Drug Liberation , Galactans/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Mannans/chemistry , Microspheres , Plant Gums/chemistry
11.
Mol Pharm ; 13(1): 211-22, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26602457

ABSTRACT

Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Valsartan/chemistry , Drug Stability , Molecular Conformation
12.
Pharm Res ; 32(2): 414-29, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25115829

ABSTRACT

PURPOSE: The objective of this study was to evaluate the thermal behavior of crystalline and amorphous bisoprolol fumarate and its compatibility with amorphous valsartan. This pharmacologically relevant drug combination is a potential candidate for fixed-dose combination formulation. METHODS: DSC and TMDSC were used to examine thermal behavior of bisoprolol fumarate. SSNMR and XRPD were applied to probe the solid state forms. The thermal behavior of physical mixtures with different concentrations of bisoprolol and valsartan were examined by DSC and TMDSC, and the observed interactions were investigated by XRPD, solution- and solid-state NMR. RESULTS: The phase transitions from thermal methods and solid-state NMR spectra of crystalline and amorphous bisoprolol fumarate are reported. Strong interactions between bisoprolol fumarate and valsartan were observed above 60 C, resulting in the formation of a new amorphous material. Solution- and solid-state NMR provided insight into the molecular nature of the incompatibility. CONCLUSIONS: A combined analysis of thermal methods, solution- and solid-state NMR and XRPD experiments allowed the investigation of the conformational and dynamic properties of bisoprolol fumarate. Since bisoprolol fumarate and valsartan react to form a new amorphous product, formulation of a fixed-dose combination would require separate reservoirs for bisoprolol and valsartan to prevent interactions. Similar problems might be expected with other excipients or APIs containing carboxylic groups.


Subject(s)
Bisoprolol/analysis , Bisoprolol/chemistry , Magnetic Resonance Spectroscopy/methods , Tetrazoles/analysis , Tetrazoles/chemistry , Valine/analogs & derivatives , X-Ray Diffraction/methods , Calorimetry, Differential Scanning/methods , Valine/analysis , Valine/chemistry , Valsartan
13.
Drug Dev Ind Pharm ; 39(10): 1508-14, 2013 Oct.
Article in English | MEDLINE | ID: mdl-22803969

ABSTRACT

Thermal behavior of angiotensin II type 1 (AT1) receptor antagonist, Valsartan (VAL), was examined employing thermogravimetric analysis (TGA), standard differential scanning calorimetry (DSC) and temperature-modulated differential scanning calorimetry (TMDSC). The stability of VAL was measured by TGA from 25 to 600°C. Decomposition of Valsartan starts around 160°C. The DSC curve shows two endotherms, occurring around 80°C and 100°C, related to evaporation of water and enthalpy relaxation, respectively. Valsartan was identified by DSC as an amorphous material and it was confirmed by X-ray powder diffraction. The glass transition of fresh Valsartan appears around 76°C (fictive temperature). TMDSC allows separation of the total heat flow rate into reversing and nonreversing parts. The nonreversing curve corresponds to the enthalpy relaxation and the reversing curve shows changes of heat capacity around 94°C. In the second run, TMDSC curve shows the glass transition process occurring at around 74°C. Results from standard DSC and TMDSC of Valsartan were compared over the whole range of temperature.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/chemistry , Antihypertensive Agents/chemistry , Tetrazoles/chemistry , Valine/analogs & derivatives , Calorimetry, Differential Scanning , Drug Stability , Hot Temperature/adverse effects , Phase Transition , Powder Diffraction , Powders , Reproducibility of Results , Thermogravimetry , Valine/chemistry , Valsartan
SELECTION OF CITATIONS
SEARCH DETAIL
...