Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 19769, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36396673

ABSTRACT

We present polarization-sensitive gap surface plasmon metasurfaces fabricated with direct material processing using pulsed laser light, an alternative and versatile approach. In particular we imprint laser induced periodic surface structures on nanometer-thick Ni films, which are back-plated by a grounded dielectric layer with TiO2 and ZnO deposition followed by Au evaporation. The procedure results in a metal-insulator-metal type plasmonic metasurface with a corrugated top layer consisting of highly-ordered, sinusoidal shaped, periodic, thin, metallic nanowires. The metasurface sustains sharp, resonant gap surface plasmons and provides various opportunities for polarization control in reflection, which is here switched by the size and infiltrating material of the insulating cavity. The polarization control is associated with the polarization sensitive perfect absorption and leads to high extinction ratios in the near-IR and mid-IR spectral areas. Corresponding Fourier-transform infrared spectroscopy measurements experimentally demonstrate that the fabrication approach produces metasurfaces with very well-defined, controllable, sharp resonances and polarization sensitive resonant absorption response which, depending on the insulating cavity size, impacts either the normal or the parallel to the nanowires polarization.

2.
Materials (Basel) ; 15(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36363059

ABSTRACT

The fabrication of laser-induced periodic surface structures (LIPSS) over extended areas at high processing speeds requires the use of high repetition rate femtosecond lasers. It is known that industrially relevant materials such as steel experience heat accumulation when irradiated at repetition rates above some hundreds of kHz, and significant debris redeposition can take place. However, there are few studies on how the laser repetition rate influences both the debris deposition and the final LIPSS morphology. In this work, we present a study of fs laser-induced fabrication of low spatial frequency LIPSS (LSFL), with pulse repetition rates ranging from 10 kHz to 2 MHz on commercially available steel. The morphology of the laser-structured areas as well as the redeposited debris was characterized by scanning electron microscopy (SEM) and µ-Raman spectroscopy. To identify repetition rate ranges where heat accumulation is present during the irradiations, we developed a simple heat accumulation model that solves the heat equation in 1 dimension implementing a Forward differencing in Time and Central differencing in Space (FTCS) scheme. Contact angle measurements with water demonstrated the influence of heat accumulation and debris on the functional wetting behavior. The findings are directly relevant for the processing of metals using high repetition rate femtosecond lasers, enabling the identification of optimum conditions in terms of desired morphology, functionality, and throughput.

3.
Materials (Basel) ; 14(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207048

ABSTRACT

Lasers have been well integrated in clinical dentistry for the last two decades, providing clinical alternatives in the management of both soft and hard tissues with an expanding use in the field of dental materials. One of their main advantages is that they can deliver very low to very high concentrated power at an exact point on any substrate by all possible means. The aim of this review is to thoroughly analyze the use of lasers in the processing of dental materials and to enlighten the new trends in laser technology focused on dental material management. New approaches for the elaboration of dental materials that require high energy levels and delicate processing, such as metals, ceramics, and resins are provided, while time consuming laboratory procedures, such as cutting restorative materials, welding, and sintering are facilitated. In addition, surface characteristics of titanium alloys and high strength ceramics can be altered. Finally, the potential of lasers to increase the adhesion of zirconia ceramics to different substrates has been tested for all laser devices, including a new ultrafast generation of lasers.

4.
Materials (Basel) ; 13(18)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937999

ABSTRACT

Experimental results are presented on laser-assisted synthesis of composite nanoparticles of perovskite BaTiO3 with gold nanoparticles using the technique of laser ablation in water and aqueous solution of hydrogen peroxide. Nanoparticles of BaTiO3 are generated by near IR laser radiation with pulse durations of 170 fs, 1 ps, and 200 ns. Nanoparticles of barium titanate BaTiO3 (BTO) have tetragonal structure for all used pulse durations. Two ways of synthesis are tested. In the first one a gold target is ablated in the colloidal solution of BaTiO3 nanoparticles. The second way consists of laser exposure of the mixture of colloidal solutions of nanoparticles of BaTiO3 and Au. Synthesized composite nanoparticles are characterized by optical spectroscopy, Raman spectroscopy, X-Ray diffractometry, and Transmission Electron Microscopy. Composite BaTiO3­Au nanoparticles have the absorption band in the visible range of spectrum and demonstrate plasmonic luminescence.

5.
Nanoscale ; 12(14): 7674-7687, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32207758

ABSTRACT

The effect of a liquid environment on the fundamental mechanisms of surface nanostructuring and generation of nanoparticles by single pulse laser ablation is investigated in a closely integrated computational and experimental study. A large-scale molecular dynamics simulation of spatially modulated ablation of Cr in water reveals a complex picture of the dynamic interaction between the ablation plume and water. Ablation plume is found to be rapidly decelerated by the water environment, resulting the formation and prompt disintegration of a hot metal layer at the interface between the ablation and water. A major fraction of the ablation plume is laterally redistributed and redeposited back to the target, forming smooth frozen surface features. Good agreement between the shapes of the surface features predicted in the simulation and the ones generated in single pulse laser ablation experiments performed for Cr in water supports the mechanistic insights revealed in the simulation. The results of this study suggest that the presence of a liquid environment can eliminate the sharp features of the surface morphology, reduce the amount of the material removed from the target by more than an order of magnitude, and narrow down the nanoparticle size distribution as compared to laser ablation under vacuum. Moreover, the computational predictions of the effective incorporation of molecules constituting the liquid environment into the surface region of the irradiated target and the generation of high vacancy concentrations, exceeding the equilibrium levels by more than an order of magnitude, suggest a potential for hyperdoping of laser-generated surfaces by solutes present in the liquid environment.

6.
Adv Mater ; 31(32): e1901123, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31231905

ABSTRACT

Here, a single-step, biomimetic approach for the realization of omnidirectional transparent antireflective glass is reported. In particular, it is shown that circularly polarized ultrashort laser pulses produce self-organized nanopillar structures on fused silica (SiO2 ). The laser-induced nanostructures are selectively textured on the glass surface in order to mimic the spatial randomness, pillar-like morphology, as well as the remarkable antireflection properties found on the wings of the glasswing butterfly, Greta oto, and various Cicada species. The artificial structures exhibit impressive antireflective properties, both in the visible and infrared frequency ranges, which are remarkably stable over time. Accordingly, the laser-processed glass surfaces show reflectivity smaller than 1% for various angles of incidence in the visible spectrum for s-p linearly polarized configurations. However, in the near-infrared spectrum, the laser-textured glass shows higher transmittance compared to the pristine. It is envisaged that the current results will revolutionize the technology of antireflective transparent surfaces and impact numerous applications from glass displays to optoelectronic devices.

7.
Beilstein J Nanotechnol ; 9: 2802-2812, 2018.
Article in English | MEDLINE | ID: mdl-30498653

ABSTRACT

The replication of complex structures found in nature represents an enormous challenge even for advanced fabrication techniques, such as laser processing. For certain applications, not only the surface topography needs to be mimicked, but often also a specific function of the structure. An alternative approach to laser direct writing of complex structures is the generation of laser-induced periodic surface structures (LIPSS), which is based on directed self-organization of the material and allows fabrication of specific micro- and nanostructures over extended areas. In this work, we exploit this approach to fabricate complex biomimetic structures on the surface of steel 1.7131 formed upon irradiation with high repetition rate femtosecond laser pulses. In particular, the fabricated structures show similarities to the skin of certain reptiles and integument of insects. Different irradiation parameters are investigated to produce the desired structures, including laser repetition rate and laser fluence, paying special attention to the influence of the number of times the same area is rescanned with the laser. The latter parameter is identified to be crucial for controlling the morphology and size of specific structures. As an example for the functionality of the structures, we have chosen the surface wettability and studied its dependence on the laser processing parameters. Contact angle measurements of water drops placed on the surface reveal that a wide range of angles can be accessed by selecting the appropriate irradiation parameters, highlighting also here the prominent role of the number of scans.

8.
ACS Appl Mater Interfaces ; 10(42): 36564-36571, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30246525

ABSTRACT

The wettability of a material surface is an essential property that can define the range of applications it can be used for. In the particular case of steel, industrial applications are countless but sometimes limited because of the lack of control over its surface properties. Although different strategies have been proposed to tune the wetting behavior of metal surfaces, most of them require the use of processes such as coatings with different materials or plasma/chemical etching. In this work, we present two different laser-based direct-write strategies that allow tuning the wetting properties of 1.7131 steel over a wide range of contact angles using a high repetition rate femtosecond laser. The strategy consists in the writing of parallel and crossed lines with variable spacing. A detailed morphological analysis confirmed the formation of microstructures superimposed with nanofeatures, forming a hierarchical surface topography that influences the wetting properties of the material surface. Contact angle measurements with water confirm that this behavior is mostly dependent on the line-to-line spacing and the polarization-dependent orientation of the structures. Moreover, we demonstrate that the structures can be easily replicated in a polymer using a laser-fabricated steel master, which enables low-cost mass production. These findings provide a practical route for developing user-defined wetting control for new applications of steel and other materials functionalized by rapid laser structuring.

9.
Sci Rep ; 7: 45114, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28327611

ABSTRACT

We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark's skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus' leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

10.
Opt Lett ; 40(22): 5172-5, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26565827

ABSTRACT

We report on the morphological effects induced by the inhomogeneous absorption of radially polarized femtosecond laser irradiation of nickel (Ni) in sub-ablation conditions. A theoretical prediction of the morphology profile is performed, and the role of surface plasmon excitation in the production of self-formed periodic ripple structures is evaluated. Results indicate a smaller periodicity of the ripples profile compared to that attained under linearly polarized irradiation conditions. A combined hydrodynamical and thermoelastic model is presented in laser beam conditions that lead to material melting. The simulation results are presented to be in good agreement with the experimental findings. The ability to control the size of the morphological changes via modulating the beam polarization may provide an additional route for controlling and optimizing the outcome of laser micro-processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...