Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 11(44): 15795-15807, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37969887

ABSTRACT

Bioderived materials have emerged as sustainable catalyst supports for several heterogeneous reactions owing to their naturally occurring hierarchal pore size distribution, high surface area, and thermal and chemical stability. We utilize sporopollenin exine capsules (SpECs), a carbon-rich byproduct of pollen grains, composed primarily of polymerized and cross-linked lipids, to synthesize carbon-encapsulated iron nanoparticles via evaporative precipitation and pyrolytic treatments. The composition and morphology of the macroparticles were influenced by the precursor iron acetate concentration. Most significantly, the formation of crystalline phases (Fe3C, α-Fe, and graphite) detected via X-ray diffraction spectroscopy showed a critical dependence on iron loading. Significantly, the characteristic morphology and structure of the SpECs were largely preserved after high-temperature pyrolysis. Analysis of Brunauer-Emmett-Teller surface area, the D and G bands from Raman spectroscopy, and the relative ratio of the C=C to C-C bonding from high-resolution X-ray photoelectron spectroscopy suggests that porosity, surface area, and degree of graphitization were easily tuned by varying the Fe loading. A mechanism for the formation of crystalline phases and meso-porosity during the pyrolysis process is also proposed. SpEC-Fe10% proved to be highly active and selective for the reverse water-gas shift reaction at high temperatures (>600 °C).

2.
Air Qual Atmos Health ; 16(3): 477-533, 2023.
Article in English | MEDLINE | ID: mdl-36467894

ABSTRACT

The nature and airborne dispersion of the underestimated biological agents, monitoring, analysis and transmission among the human occupants into building environment is a major challenge of today. Those agents play a crucial role in ensuring comfortable, healthy and risk-free conditions into indoor working and leaving spaces. It is known that ventilation systems influence strongly the transmission of indoor air pollutants, with scarce information although to have been reported for biological agents until 2019. The biological agents' source release and the trajectory of airborne transmission are both important in terms of optimising the design of the heating, ventilation and air conditioning systems of the future. In addition, modelling via computational fluid dynamics (CFD) will become a more valuable tool in foreseeing risks and tackle hazards when pollutants and biological agents released into closed spaces. Promising results on the prediction of their dispersion routes and concentration levels, as well as the selection of the appropriate ventilation strategy, provide crucial information on risk minimisation of the airborne transmission among humans. Under this context, the present multidisciplinary review considers four interrelated aspects of the dispersion of biological agents in closed spaces, (a) the nature and airborne transmission route of the examined agents, (b) the biological origin and health effects of the major microbial pathogens on the human respiratory system, (c) the role of heating, ventilation and air-conditioning systems in the airborne transmission and (d) the associated computer modelling approaches. This adopted methodology allows the discussion of the existing findings, on-going research, identification of the main research gaps and future directions from a multidisciplinary point of view which will be helpful for substantial innovations in the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...