Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 96(11)2020 11 03.
Article in English | MEDLINE | ID: mdl-32510564

ABSTRACT

Understanding the successional dynamics governing soil microbial community assembly following disturbance can aid in developing remediation strategies for disturbed land. However, the influences shaping microbial communities during succession following soil disturbance remain only partially understood. One example of a severe disturbance to soil is surface mining for natural resources, which displaces communities and changes the physical and chemical soil environment. These changes may alter community composition through selective pressure on microbial taxa (i.e. deterministic processes). Dispersal and ecological drift may also shape communities following disturbance (i.e. stochastic processes). Here, the relative influence of stochastic and deterministic processes on microbial community succession was investigated using a chronosequence of reclaimed surface mines ranging from 2-32 years post-reclamation. Sequencing of bacterial and fungal ribosomal gene amplicons coupled with a linear modeling approach revealed that following mine reclamation, while bacterial communities are modestly influenced by stochastic factors, the influence of deterministic factors was ∼7 × greater. Fungal communities were influenced only by deterministic factors. Soil organic matter, texture, and pH emerged as the most influential environmental factors on both bacterial and fungal communities. Our results suggest that management of deterministic soil characteristics over a sufficient time period could increase the microbial diversity and productivity of mine soils.


Subject(s)
Microbiota , Soil , Bacteria/genetics , Mining , Soil Microbiology
2.
Environ Manage ; 47(5): 751-65, 2011 May.
Article in English | MEDLINE | ID: mdl-21479921

ABSTRACT

Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.


Subject(s)
Coal Mining , Conservation of Natural Resources/methods , Ecosystem , Appalachian Region
3.
Environ Geochem Health ; 33 Suppl 1: 23-30, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21052787

ABSTRACT

The cadmium (Cd) content of rice grain grown in metal-contaminated paddy soils near abandoned metal mines in South Korea was found to exceed safety guidelines (0.2 mg Cd kg⁻¹) set by the Korea Food and Drug Administration (KFDA). However, current remediation technologies for heavy metal-contaminated soils have limited application with respect to rice paddy soils. Laboratory and greenhouse experiments were conducted to assess the effects of amending contaminated rice paddy soils with zerovalent iron (ZVI), lime, humus, compost, and combinations of these compounds to immobilize Cd and inhibit Cd translocation to rice grain. Sequential extraction analysis revealed that treatment with the ameliorants induced a 50-90% decrease in the bioavailable Cd fractions when compared to the untreated control soil. When compared to the control, Cd uptake by rice was decreased in response to treatment with ZVI + humus (69%), lime (65%), ZVI + compost (61%), compost (46%), ZVI (42%), and humus (14%). In addition, ameliorants did not influence rice yield when compared to that of the control. Overall, the results of this study indicated that remediation technologies using ameliorants effectively reduce Cd bioavailability and uptake in contaminated rice paddy soils.


Subject(s)
Cadmium/chemistry , Environmental Restoration and Remediation/methods , Mining , Oryza , Soil Pollutants/chemistry , Cadmium/analysis , Calcium Compounds/chemistry , Iron/chemistry , Oxides/chemistry , Republic of Korea , Soil/chemistry , Soil Pollutants/analysis
4.
Environ Monit Assess ; 157(1-4): 43-50, 2009 Oct.
Article in English | MEDLINE | ID: mdl-18758977

ABSTRACT

Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.


Subject(s)
Acid Rain/analysis , Micronutrients/analysis , Pinus/metabolism , Soil Pollutants/analysis , Soil/analysis , Calcium/analysis , Environmental Monitoring , Korea , Nitrogen/analysis , Phosphorus/analysis , Plant Leaves/metabolism , Potassium/analysis , Sulfur/analysis
5.
Water Res ; 37(4): 921-7, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12531275

ABSTRACT

In order to evaluate the efficacy of constructed wetlands for treatment of domestic wastewater for small communities located in rural areas, small-scale wetland mesocosms (400 L each) containing two treatment designs (a mixture of Typha, Scirpus, and Juncus species; control without vegetation) were planted into two depths (45 or 60 cm) with pea gravel. Each mesocosm received 19 L/day of primary-treated domestic sewage. Mesocosms were monitored (inflow and outflow samples) on a monthly basis over a 2-year period for pH, total suspended solids (TSS), 5-day biochemical oxygen demand (BOD(5)), total Kjeldahl nitrogen (TKN), dissolved oxygen (DO), and conductivity. Microbiological analyses included enumeration of fecal coliforms, enterococci, Salmonella, Shigella, Yersinia, and coliphage. Significant differences between influent and effluent water quality for the vegetated wetlands (p<0.05) were observed in TSS, BOD(5), and TKN. Increased DO and reduction in fecal coliform, enterococcus, Salmonella, Shigella, Yersinia, and coliphage populations also were observed in vegetated wetlands. Greatest microbial reductions were observed in the planted mesocosms compared to those lacking vegetation. Despite marked reduction of several contaminants, wetland-treated effluents did not consistently meet final discharge limits for receiving bodies of water. Removal efficiencies for bacteria and several chemical parameters were more apparent during the initial year compared to the second year of operation, suggesting concern for long-term efficiency and stability of such wetlands.


Subject(s)
Ecosystem , Water Microbiology , Water Pollutants, Chemical/analysis , Water Pollutants/analysis , Water Purification/methods , Environmental Monitoring , Time Factors , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...