Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 7: 326, 2019.
Article in English | MEDLINE | ID: mdl-31139618

ABSTRACT

Bioalcohols are a promising family of biofuels. Among them, 1-butanol has a strong potential as a substitute for petrol. In this manuscript, we report on a theoretical and experimental characterization of 1-butanol thermal decomposition, a very important process in the 1-butanol combustion at high temperatures. Advantage has been taken of a flash pyrolysis experimental set-up with mass spectrometric detection, in which the brief residence time of the pyrolyzing mixture inside a short, resistively heated SiC tube allows the identification of the primary products of the decomposing species, limiting secondary processes. Dedicated electronic structure calculations of the relevant potential energy surface have also been performed and RRKM estimates of the rate coefficients and product branching ratios up to 2,000 K are provided. Both electronic structure and RRKM calculations are in line with previous determinations. According to the present study, the H2O elimination channel leading to 1-butene is more important than previously believed. In addition to that, we provide experimental evidence that butanal formation by H2 elimination is not a primary decomposition route. Finally, we have experimental evidence of a small yield of the CH3 elimination channel.

2.
Phys Chem Chem Phys ; 14(5): 1589-95, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22186926

ABSTRACT

The development of an innovative computational strategy suited to provide an accurate quantum evaluation of the detailed properties of the N + N(2) exchange reaction has been undertaken by carrying out an extended theoretical study of such reaction. To this end exact and approximate quantum calculations (based on both time-independent and time-dependent techniques) of state-specific and state-to-state probabilities of the title reaction have been performed by considering values of the total angular momentum quantum number up to 20, values of total energy up to 2.3 eV and by making a combined use of both high throughput and high performance computing platforms. The comparison of the results obtained from calculations performed by taking into account the full Coriolis coupling of the allowed helicity states with those obtained when neglecting the Coriolis coupling or even a model energy shift treatment has allowed us to find out when a workflow managing the distribution of the jobs can replace exact treatments with approximate ones and for what type of properties this is possible.

3.
Faraday Discuss ; 147: 189-216; discussion 251-82, 2010.
Article in English | MEDLINE | ID: mdl-21302548

ABSTRACT

The dynamics of the H-displacement channels in the reaction N(2D) + C2H6 have been investigated by the crossed molecular beam technique with mass spectrometric detection and time-of-flight analysis at two different collision energies (18.0 and 31.4 kJ mol(-1)). From the derived center-of-mass product angular and translational energy distributions the reaction micromechanisms and the product energy partitioning have been obtained. The interpretation of the scattering results is assisted by new ab initio electronic structure calculations of stationary points and product energetics for the C2H6N ground state doublet potential energy surface. C-C bond breaking and NH production channels have been theoretically characterized and the statistical branching ratio derived at the temperatures relevant for the atmosphere of Titan. Methanimine plus CH3 and ethanimine plus H are the main reaction channels. Implications for the atmospheric chemistry of Titan are discussed.

4.
Phys Chem Chem Phys ; 11(48): 11456-62, 2009 Dec 28.
Article in English | MEDLINE | ID: mdl-20024416

ABSTRACT

An extended comparison of the reactive properties of the N + N(2) exchange reaction calculated on a non-collinear dominant potential energy surface using both a centrifugal sudden and a J-shift quantum method is reported. The choice of carrying out such an investigation for N + N(2) is motivated by the fact that the best available (and currently used for spacecraft re-entry simulations) computed set of kinetic data has been worked out using the low level J-shift approximation though based on exact quantum zero total angular momentum probabilities. The fact that our investigation is carried out for a heavy system and a potential energy surface free of wells in the strong interaction region minimizes the occurrence of tunnel, resonance and interference effects which would make the rationalization of the result difficult and the centrifugal sudden treatment less accurate. The study has provided evidence of two important limits of the J-shift approximation: the wrong determination of the maximum value of the total angular momentum quantum number J contributing to reactivity and the lack of deformation of the partial reactive probability dependence on energy at fixed J value. Accordingly, it has been found that the J-shift state-specific cross sections underestimate the corresponding CS values when the initial diatomic rotational energy is low while the situation reverses when the initial diatomic rotational energy is high.

5.
J Phys Chem A ; 113(52): 15328-45, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-19761231

ABSTRACT

The reaction between sulfur atoms in the first electronically excited state, S((1)D), and ethene (C(2)H(4)) has been investigated in a complementary fashion in (a) crossed-beam dynamic experiments with mass spectrometric detection and time-of-flight (TOF) analysis at two collision energies (37.0 and 45.0 kJ mol(-1)), (b) low temperature kinetics experiments ranging from 298 K down to 23 K, and (c) electronic structure calculations of stationary points and product energetics on the C(2)H(4)S singlet and triplet potential energy surfaces. The rate coefficients for total loss of S((1)D) are found to be very large (ca. 4 x 10(-10) cm(3) molecule(-1) s(-1)) down to very low temperatures indicating that the overall reaction is barrierless. From laboratory angular and TOF distributions at different product masses, three competing reaction channels leading to H + CH(2)CHS (thiovinoxy), H(2) + CH(2)CS (thioketene), and CH(3) + HCS (thioformyl) have been unambiguously identified and their dynamics characterized. Product branching ratios have also been estimated. Interpretation of the experimental results on the reaction kinetics and dynamics is assisted by high-level theoretical calculations on the C(2)H(4)S singlet potential energy surface. RRKM (Rice-Ramsperger-Kassel-Marcus) estimates of the product branching ratios using the newly developed singlet potential energy surface have also been performed and compared with the experimental determinations.

6.
J Phys Chem A ; 113(42): 11138-52, 2009 Oct 22.
Article in English | MEDLINE | ID: mdl-19642633

ABSTRACT

The dynamics of the H-displacement channel in the reaction N((2)D) + CH(4) has been investigated by the crossed molecular beam (CMB) technique with mass spectrometric detection and time-of-flight (TOF) analysis at five different collision energies (from 22.2 up to 65.1 kJ/mol). The CMB results have identified two distinct isomers as primary reaction products, methanimine and methylnitrene, the yield of which significantly varies with the total available energy. From the derived center-of-mass product angular and translational energy distributions the reaction micromechanisms, the product energy partitioning and the relative branching ratios of the competing reaction channels leading to the two isomers have been obtained. The interpretation of the scattering results is assisted by new ab initio electronic structure calculations of stationary points and product energetics for the CH(4)N ground state doublet potential energy surface. Differently from previous theoretical studies, both insertion and H-abstraction pathways have been found to be barrierless at all levels of theory employed in this work. A comparison between experimental results on the two isomer branching ratio and RRKM estimates, based on the new electronic structure calculations, confirms the highly nonstatistical nature of the N((2)D) + CH(4) reaction, with the production of the CH(3)N isomer dominated by dynamical effects. The implications for the chemical models of the atmosphere of Titan are discussed.

7.
Phys Chem Chem Phys ; 11(11): 1752-7, 2009 Mar 21.
Article in English | MEDLINE | ID: mdl-19290346

ABSTRACT

State-to-state exact quantum probabilities of the N + N2 exchange reaction have been calculated on the recently proposed L4 potential energy surface fitted to high level ab initio points using full-dimensional time-independent quantum techniques. Thermal rate coefficient values calculated on L4 were found not to differ from those calculated on a previously proposed potential energy surface. On the contrary, state-specific reaction probabilities calculated on the two surfaces are shown to differ significantly. Arguments for attributing the difference to specific features of the considered potential energy surfaces are provided.

8.
J Phys Chem A ; 110(16): 5289-94, 2006 Apr 27.
Article in English | MEDLINE | ID: mdl-16623454

ABSTRACT

The zero total angular momentum (J = 0) S matrix elements, calculated using a time-dependent wave packet method for the Cl (2P) + H2 reaction on two different potential energy surfaces, have been matrix transformed to the stereodirected and Gauss-Legendre discrete variable representations. Although the results in the two representations are (as expected) quantitatively different with respect to the angular selectivity and specificity of the reactive process, the qualitative similarity has allowed us to draw for the first time conclusions with respect to some characteristics of the potential energy surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...