Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 706-720, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37428847

ABSTRACT

Muramidases (also known as lysozymes) hydrolyse the peptidoglycan component of the bacterial cell wall and are found in many glycoside hydrolase (GH) families. Similar to other glycoside hydrolases, muramidases sometimes have noncatalytic domains that facilitate their interaction with the substrate. Here, the identification, characterization and X-ray structure of a novel fungal GH24 muramidase from Trichophaea saccata is first described, in which an SH3-like cell-wall-binding domain (CWBD) was identified by structure comparison in addition to its catalytic domain. Further, a complex between a triglycine peptide and the CWBD from T. saccata is presented that shows a possible anchor point of the peptidoglycan on the CWBD. A `domain-walking' approach, searching for other sequences with a domain of unknown function appended to the CWBD, was then used to identify a group of fungal muramidases that also contain homologous SH3-like cell-wall-binding modules, the catalytic domains of which define a new GH family. The properties of some representative members of this family are described as well as X-ray structures of the independent catalytic and SH3-like domains of the Kionochaeta sp., Thermothielavioides terrestris and Penicillium virgatum enzymes. This work confirms the power of the module-walking approach, extends the library of known GH families and adds a new noncatalytic module to the muramidase arsenal.


Subject(s)
Muramidase , Peptidoglycan , Muramidase/chemistry , Amino Acid Sequence , Models, Molecular , Glycoside Hydrolases/chemistry , Cell Wall
2.
PLoS One ; 16(3): e0248190, 2021.
Article in English | MEDLINE | ID: mdl-33711051

ABSTRACT

Muramidases/lysozymes hydrolyse the peptidoglycan component of the bacterial cell wall. They are found in many of the glycoside hydrolase (GH) families. Family GH25 contains muramidases/lysozymes, known as CH type lysozymes, as they were initially discovered in the Chalaropsis species of fungus. The characterized enzymes from GH25 exhibit both ß-1,4-N-acetyl- and ß-1,4-N,6-O-diacetylmuramidase activities, cleaving the ß-1,4-glycosidic bond between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) moieties in the carbohydrate backbone of bacterial peptidoglycan. Here, a set of fungal GH25 muramidases were identified from a sequence search, cloned and expressed and screened for their ability to digest bacterial peptidoglycan, to be used in a commercial application in chicken feed. The screen identified the enzyme from Acremonium alcalophilum JCM 736 as a suitable candidate for this purpose and its relevant biochemical and biophysical and properties are described. We report the crystal structure of the A. alcalophilum enzyme at atomic, 0.78 Å resolution, together with that of its homologue from Trichobolus zukalii at 1.4 Å, and compare these with the structures of homologues. GH25 enzymes offer a new solution in animal feed applications such as for processing bacterial debris in the animal gut.


Subject(s)
Fungi/metabolism , Muramidase/metabolism , Protein Conformation , Animals , Cell Wall/metabolism , Crystallography, X-Ray , Models, Molecular
3.
Int J Mol Sci ; 20(22)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698762

ABSTRACT

Muramidases/lysozymes are important bio-molecules, which cleave the glycan backbone in the peptidoglycan polymer found in bacterial cell walls. The glycoside hydrolase (GH) family 22 C-type lysozyme, from the folivorous bird Opisthocomus hoazin (stinkbird), was expressed in Aspergillus oryzae, and a set of variants was produced. All variants were enzymatically active, including those designed to probe key differences between the Hoatzin enzyme and Hen Egg White lysozyme. Four variants showed improved thermostability at pH 4.7, compared to the wild type. The X-ray structure of the enzyme was determined in the apo form and in complex with chitin oligomers. Bioinformatic analysis of avian GH22 amino acid sequences showed that they separate out into three distinct subgroups (chicken-like birds, sea birds and other birds). The Hoatzin is found in the "other birds" group and we propose that this represents a new cluster of avian upper-gut enzymes.


Subject(s)
Birds/metabolism , Muramidase/chemistry , Upper Gastrointestinal Tract/enzymology , Amino Acid Sequence , Animals , Aspergillus/metabolism , Cell Wall/metabolism , Hydrogen-Ion Concentration , Models, Molecular , Phylogeny , Polysaccharides/chemistry , Static Electricity
4.
Acta Crystallogr D Struct Biol ; 74(Pt 5): 463-470, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717717

ABSTRACT

Glucoamylases are one of the most important classes of enzymes in the industrial degradation of starch biomass. They consist of a catalytic domain and a carbohydrate-binding domain (CBM), with the latter being important for the interaction with the polymeric substrate. Whereas the catalytic mechanisms and structures of the individual domains are well known, the spatial arrangement of the domains with respect to each other and its influence on activity are not fully understood. Here, the structures of three industrially used fungal glucoamylases, two of which are full length, have been crystallized and determined. It is shown for the first time that the relative orientation between the CBM and the catalytic domain is flexible, as they can adopt different orientations independently of ligand binding, suggesting a role as an anchor to increase the contact time and the relative concentration of substrate near the active site. The flexibility in the orientations of the two domains presented a considerable challenge for the crystallization of the enzymes.


Subject(s)
Fungi/enzymology , Glucan 1,4-alpha-Glucosidase/chemistry , Binding Sites , Carbohydrate Metabolism , Catalytic Domain , Crystallization , Crystallography/methods , Fungal Proteins/chemistry , Protein Binding , Protein Conformation , Protein Domains , Starch/metabolism
5.
PLoS One ; 8(7): e70013, 2013.
Article in English | MEDLINE | ID: mdl-23936134

ABSTRACT

The impact of disulfide bonds on protein stability goes beyond simple equilibrium thermodynamics effects associated with the conformational entropy of the unfolded state. Indeed, disulfide crosslinks may play a role in the prevention of dysfunctional association and strongly affect the rates of irreversible enzyme inactivation, highly relevant in biotechnological applications. While these kinetic-stability effects remain poorly understood, by analogy with proposed mechanisms for processes of protein aggregation and fibrillogenesis, we propose that they may be determined by the properties of sparsely-populated, partially-unfolded intermediates. Here we report the successful design, on the basis of high temperature molecular-dynamics simulations, of six thermodynamically and kinetically stabilized variants of phytase from Citrobacter braakii (a biotechnologically important enzyme) with one, two or three engineered disulfides. Activity measurements and 3D crystal structure determination demonstrate that the engineered crosslinks do not cause dramatic alterations in the native structure. The inactivation kinetics for all the variants displays a strongly non-Arrhenius temperature dependence, with the time-scale for the irreversible denaturation process reaching a minimum at a given temperature within the range of the denaturation transition. We show this striking feature to be a signature of a key role played by a partially unfolded, intermediate state/ensemble. Energetic and mutational analyses confirm that the intermediate is highly unfolded (akin to a proposed critical intermediate in the misfolding of the prion protein), a result that explains the observed kinetic stabilization. Our results provide a rationale for the kinetic-stability consequences of disulfide-crosslink engineering and an experimental methodology to arrive at energetic/structural descriptions of the sparsely populated and elusive intermediates that play key roles in irreversible protein denaturation.


Subject(s)
6-Phytase/chemistry , Disulfides , Thermodynamics , 6-Phytase/genetics , 6-Phytase/metabolism , Citrobacter/enzymology , Enzyme Activation , Enzyme Stability , Kinetics , Models, Molecular , Mutation , Protein Conformation , Protein Denaturation , Protein Engineering , Protein Folding , Temperature
6.
Article in English | MEDLINE | ID: mdl-23989143

ABSTRACT

Amylosucrases (ASes) catalyze the formation of an α-1,4-glucosidic linkage by transferring a glucosyl unit from sucrose onto an acceptor α-1,4-glucan. To date, several ligand-bound crystal structures of wild-type and mutant ASes from Neisseria polysaccharea and Deinococcus geothermalis have been solved. These structures all display a very similar overall conformation with a deep pocket leading to the site for transglucosylation, subsite -1. This has led to speculation on how sucrose enters the active site during glucan elongation. In contrast to previous studies, the AS structure from D. radiodurans presented here has a completely empty -1 subsite. This structure is strikingly different from other AS structures, as an active-site-lining loop comprising residues Leu214-Asn225 is found in a previously unobserved conformation. In addition, a large loop harbouring the conserved active-site residues Asp133 and Tyr136 is disordered. The result of the changed loop conformations is that the active-site topology is radically changed, leaving subsite -1 exposed and partially dismantled. This structure provides novel insights into the dynamics of ASes and comprises the first structural support for an elongation mechanism that involves considerable conformational changes to modulate accessibility to the sucrose-binding site and thereby allows successive cycles of glucosyl-moiety transfer to a growing glucan chain.


Subject(s)
Bacterial Proteins/chemistry , Deinococcus/chemistry , Glucans/chemistry , Glucosyltransferases/chemistry , Sucrose/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Deinococcus/enzymology , Deinococcus/genetics , Escherichia coli/genetics , Glucans/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Sucrose/metabolism
7.
PLoS One ; 8(5): e65062, 2013.
Article in English | MEDLINE | ID: mdl-23741456

ABSTRACT

Phytases hydrolyse phytate (myo-inositol hexakisphosphate), the principal form of phosphate stored in plant seeds to produce phosphate and lower phosphorylated myo-inositols. They are used extensively in the feed industry, and have been characterised biochemically and structurally with a number of structures in the PDB. They are divided into four distinct families: histidine acid phosphatases (HAP), ß-propeller phytases, cysteine phosphatases and purple acid phosphatases and also split into three enzyme classes, the 3-, 5- and 6-phytases, depending on the position of the first phosphate in the inositol ring to be removed. We report identification, cloning, purification and 3D structures of 6-phytases from two bacteria, Hafnia alvei and Yersinia kristensenii, together with their pH optima, thermal stability, and degradation profiles for phytate. An important result is the structure of the H. alvei enzyme in complex with the substrate analogue myo-inositol hexakissulphate. In contrast to the only previous structure of a ligand-bound 6-phytase, where the 3-phosphate was unexpectedly in the catalytic site, in the H. alvei complex the expected scissile 6-phosphate (sulphate in the inhibitor) is placed in the catalytic site.


Subject(s)
6-Phytase/metabolism , Hafnia alvei/metabolism , Phytic Acid/metabolism , 6-Phytase/chemistry , 6-Phytase/genetics , Amino Acid Sequence , Binding Sites , Catalytic Domain , Hafnia alvei/classification , Hafnia alvei/genetics , Hydrolysis , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Binding , Protein Conformation , Sequence Alignment , Substrate Specificity
8.
J Sci Food Agric ; 91(8): 1398-405, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21387323

ABSTRACT

BACKGROUND: Phytases increase utilization of phytate phosphorus in feed. Since wheat is rich in endogenous phytase activity it was examined whether wheat phytases could improve phytate degradation compared to microbial phytases. Moreover, it was investigated whether enzymatic degradation of phytate is influenced by the matrix surrounding it. Phytate degradation was defined as the decrease in the sum of InsP6 + InsP5. RESULTS: Endogenous wheat phytase effectively degraded wheat Ins6 + InsP5 at pH 4 and pH 5, while this was not true for a recombinant wheat phytase or phytase extracted from wheat bran. Only microbial phytases were able to degrade InsP6 + InsP5 in the entire pH range from 3 to 5, which is relevant for feed applications. A microbial phytase was efficient towards InsP6 + InsP5 in different phytate samples, whereas the ability to degrade InsP6 + InsP5 in the different phytate samples ranged from 12% to 70% for the recombinant wheat phytase. CONCLUSION: Wheat phytase appeared to have an interesting potential. However, the wheat phytases studied could not improve phytate degradation compared to microbial phytases. The ability to degrade phytate in different phytate samples varied greatly for some phytases, indicating that phytase efficacy may be affected by the phytate matrix.


Subject(s)
6-Phytase/metabolism , Phosphorus, Dietary/metabolism , Phytic Acid/metabolism , Plant Proteins/metabolism , Triticum/metabolism , 6-Phytase/pharmacology , Animal Feed , Bacillus/enzymology , Hydrogen-Ion Concentration , Recombinant Proteins/metabolism , Seeds , Triticum/enzymology
9.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 12): 1309-14, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19966417

ABSTRACT

Glycoside hydrolase family 13 (GH-13) mainly contains starch-degrading or starch-modifying enzymes. Sucrose hydrolases utilize sucrose instead of amylose as the primary glucosyl donor. Here, the catalytic properties and X-ray structure of sucrose hydrolase from Xanthomonas campestris pv. campestris are reported. Sucrose hydrolysis catalyzed by the enzyme follows Michaelis-Menten kinetics, with a K(m) of 60.7 mM and a k(cat) of 21.7 s(-1). The structure of the enzyme was solved at a resolution of 1.9 A in the resting state with an empty active site. This represents the first apo structure from subfamily 4 of GH-13. Comparisons with structures of the highly similar sucrose hydrolase from X. axonopodis pv. glycines most notably showed that residues Arg516 and Asp138, which form a salt bridge in the X. axonopodis sucrose complex and define part of the subsite -1 glucosyl-binding determinants, are not engaged in salt-bridge formation in the resting X. campestris enzyme. In the absence of the salt bridge an opening is created which gives access to subsite -1 from the ;nonreducing' end. Binding of the glucosyl moiety in subsite -1 is therefore likely to induce changes in the conformation of the active-site cleft of the X. campestris enzyme. These changes lead to salt-bridge formation that shortens the groove. Additionally, this finding has implications for understanding the molecular mechanism of the closely related subfamily 4 glucosyl transferase amylosucrase, as it indicates that sucrose could enter the active site from the ;nonreducing' end during the glucan-elongation cycle.


Subject(s)
Glycoside Hydrolases/chemistry , Xanthomonas campestris/enzymology , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Glycoside Hydrolases/metabolism , Models, Molecular , Protein Structure, Tertiary , Sucrose/metabolism
10.
Biochemistry ; 47(28): 7441-51, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18563919

ABSTRACT

The crystal structure of the family GH-51 alpha- l-arabinofuranosidase from Thermobacillus xylanilyticus has been solved as a seleno-methionyl derivative. In addition, the structure of an inactive mutant Glu176Gln is presented in complex with a branched pentasaccharide, a fragment of its natural substrate xylan. The overall structure shows the two characteristic GH-51 domains: a catalytic domain that is folded into a (beta/alpha) 8-barrel and a C-terminal domain that displays jelly roll architecture. The pentasaccharide is bound in a groove on the surface of the enzyme, with the mono arabinosyl branch entering a tight pocket harboring the catalytic dyad. Detailed analyses of both structures and comparisons with the two previously determined structures from Geobacillus stearothermophilus and Clostridium thermocellum reveal important details unique to the Thermobacillus xylanilyticus enzyme. In the absence of substrate, the enzyme adopts an open conformation. In the substrate-bound form, the long loop connecting beta-strand 2 to alpha-helix 2 closes the active site and interacts with the substrate through residues His98 and Trp99. The results of kinetic and fluorescence titration studies using mutants underline the importance of this loop, and support the notion of an interaction between Trp99 and the bound substrate. We suggest that the changes in loop conformation are an integral part of the T. xylanilyticus alpha- l-arabinofuranosidase reaction mechanism, and ensure efficient binding and release of substrate.


Subject(s)
Bacillaceae/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Oligosaccharides/chemistry , Xylans/metabolism , Arabinose/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carbohydrate Conformation , Crystallography, X-Ray , Glycoside Hydrolases/genetics , Models, Molecular , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Thermodynamics
11.
Proteins ; 66(1): 118-26, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17044042

ABSTRACT

Amylosucrase from Neisseria polysaccharea (AS) is a transglucosidase from the glycoside-hydrolase family 13 that catalyzes the synthesis of an amylose-like polymer from sucrose, without any primer. Its affinity towards glycogen is particularly noteworthy since glycogen is the best D-glucosyl unit acceptor and the most efficient activator (98-fold k(cat) increase) known for this enzyme. Glycogen-enzyme interactions were modeled starting from the crystallographic AS: maltoheptaose complex, where two key oligosaccharide binding sites, OB1 and OB2, were identified. Two maltoheptaose molecules were connected by an alpha-1,6 branch by molecular modeling to mimic a glycogen branching. Among the various docking positions obtained, four models were chosen based on geometry and energy criteria. Robotics calculations enabled us to describe a back and forth motion of a hairpin loop of the AS specific B'-domain, a movement that assists the elongation of glycogen branches. Modeling data combined with site-directed mutagenesis experiments revealed that the OB2 surface site provides an anchoring platform at the enzyme surface to capture the polymer and direct the branches towards the OB1 acceptor site for elongation. On the basis of the data obtained, a semiprocessive glycogen elongation mechanism can be proposed.


Subject(s)
Glucosyltransferases/chemistry , Glycogen/chemistry , Arginine/metabolism , Binding Sites , Crystallography, X-Ray , Glucans/metabolism , Glucosyltransferases/metabolism , Glycogen/metabolism , Models, Biological , Models, Molecular , Mutagenesis, Site-Directed , Neisseria/chemistry , Neisseria/enzymology , Phenylalanine/metabolism , Protein Conformation , Sucrose/metabolism
12.
J Biol Chem ; 281(46): 35576-84, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-16990265

ABSTRACT

The reaction mechanism of sucrose phosphorylase from Bifidobacterium adolescentis (BiSP) was studied by site-directed mutagenesis and x-ray crystallography. An inactive mutant of BiSP (E232Q) was co-crystallized with sucrose. The structure revealed a substrate-binding mode comparable with that seen in other related sucrose-acting enzymes. Wild-type BiSP was also crystallized in the presence of sucrose. In the dimeric structure, a covalent glucosyl intermediate was formed in one molecule of the BiSP dimer, and after hydrolysis of the glucosyl intermediate, a beta-D-glucose product complex was formed in the other molecule. Although the overall structure of the BiSP-glucosyl intermediate complex is similar to that of the BiSP(E232Q)-sucrose complex, the glucose complex discloses major differences in loop conformations. Two loops (residues 336-344 and 132-137) in the proximity of the active site move up to 16 and 4 A, respectively. On the basis of these findings, we have suggested a reaction cycle that takes into account the large movements in the active-site entrance loops.


Subject(s)
Bifidobacterium/enzymology , Glucosyltransferases/metabolism , Sucrose/metabolism , Binding Sites , Carbohydrate Conformation , Models, Molecular , Protein Conformation
13.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 6): 595-604, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16699186

ABSTRACT

Wasp venom from Vespula vulgaris contains three major allergens: Ves v 1, Ves v 2 and Ves v 5. Here, the cloning, expression, biochemical characterization and crystal structure determination of the hyaluronidase Ves v 2 from family 56 of the glycoside hydrolases are reported. The allergen was expressed in Escherichia coli as an insoluble protein and refolded and purified to obtain full enzymatic activity. Three N-glycosylation sites at Asn79, Asn99 and Asn127 were identified in Ves v 2 from a natural source by enzymatic digestions combined with MALDI-TOF mass spectrometry. The crystal structure of recombinant Ves v 2 was determined at 2.0 A resolution and reveals a central (beta/alpha)(7) core that is further stabilized by two disulfide bonds (Cys19-Cys308 and Cys185-Cys197). Based on sequence alignments and structural comparison with the honeybee allergen Api m 2, it is proposed that a conserved cavity near the active site is involved in binding of the substrate. Surface epitopes and putative glycosylation sites have been compared with those of two other major group 2 allergens from Apis mellifera (honeybee) and Dolichovespula maculata (white-faced hornet). The analysis suggests that the harboured allergic IgE-mediated cross-reactivity between Ves v 2 and the allergen from D. maculata is much higher than that between Ves v 2 and the allergen from A. mellifera.


Subject(s)
Hyaluronoglucosaminidase/chemistry , Models, Molecular , Wasp Venoms/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Glycosylation , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/isolation & purification , Molecular Sequence Data , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Sequence Analysis, Protein , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Wasp Venoms/genetics , Wasp Venoms/isolation & purification
14.
FEBS J ; 273(4): 673-81, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16441655

ABSTRACT

Amylosucrase is a transglycosidase which belongs to family 13 of the glycoside hydrolases and transglycosidases, and catalyses the formation of amylose from sucrose. Its potential use as an industrial tool for the synthesis or modification of polysaccharides is hampered by its low catalytic efficiency on sucrose alone, its low stability and the catalysis of side reactions resulting in sucrose isomer formation. Therefore, combinatorial engineering of the enzyme through random mutagenesis, gene shuffling and selective screening (directed evolution) was applied, in order to generate more efficient variants of the enzyme. This resulted in isolation of the most active amylosucrase (Asn387Asp) characterized to date, with a 60% increase in activity and a highly efficient polymerase (Glu227Gly) that produces a longer polymer than the wild-type enzyme. Furthermore, judged from the screening results, several variants are expected to be improved concerning activity and/or thermostability. Most of the amino acid substitutions observed in the totality of these improved variants are clustered around specific regions. The secondary sucrose-binding site and beta strand 7, connected to the important Asp393 residue, are found to be important for amylosucrase activity, whereas a specific loop in the B-domain is involved in amylosucrase specificity and stability.


Subject(s)
Evolution, Molecular , Genetic Variation , Glucosyltransferases/metabolism , Protein Conformation , Enzyme Stability , Escherichia coli/enzymology , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Models, Molecular , Mutation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Substrate Specificity , Temperature
15.
FEBS Lett ; 579(5): 1154-60, 2005 Feb 14.
Article in English | MEDLINE | ID: mdl-15710405

ABSTRACT

The X-ray structure of the ligand-binding core of the kainate receptor GluR5 (GluR5-S1S2) in complex with (S)-glutamate was determined to 1.95 A resolution. The overall GluR5-S1S2 structure comprises two domains and is similar to the related AMPA receptor GluR2-S1S2J. (S)-glutamate binds as in GluR2-S1S2J. Distinct features are observed for Ser741, which stabilizes a highly coordinated network of water molecules and forms an interdomain bridge. The GluR5 complex exhibits a high degree of domain closure (26 degrees) relative to apo GluR2-S1S2J. In addition, GluR5-S1S2 forms a novel dimer interface with a different arrangement of the two protomers compared to GluR2-S1S2J.


Subject(s)
Glutamates/metabolism , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Dimerization , Ligands , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Receptors, AMPA/chemistry , Receptors, AMPA/metabolism , Sequence Alignment
16.
FEBS Lett ; 579(5): 1208-12, 2005 Feb 14.
Article in English | MEDLINE | ID: mdl-15710415

ABSTRACT

The X-ray structure of the group 2 major allergen from Dermatophagoides farinae (Der f 2) was determined to 1.83 A resolution. The overall Der f 2 structure comprises a single domain of immunoglobulin fold with two anti-parallel beta-sheets. A large hydrophobic cavity is formed in the interior of Der f 2. Structural comparisons to distantly related proteins suggest a role in lipid binding. Immunoglobulin E (IgE) cross-reactivity between group 2 house dust mite major allergens can be explained by conserved surface areas representing IgE binding epitopes.


Subject(s)
Allergens/chemistry , Allergens/immunology , Antigens, Dermatophagoides/chemistry , Antigens, Dermatophagoides/immunology , Cross Reactions/immunology , Immunoglobulin E/immunology , Pyroglyphidae/chemistry , Animals , Arthropod Proteins , Crystallography, X-Ray , Epitopes/immunology , Hydrophobic and Hydrophilic Interactions , Lipid Metabolism , Models, Molecular , Protein Structure, Tertiary , Pyroglyphidae/immunology
17.
Protein Pept Lett ; 12(7): 687-93, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16522185

ABSTRACT

The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (Tm) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C-terminal alpha-helix was of major importance to the conformational stability of calreticulin.


Subject(s)
Calreticulin/chemistry , Calreticulin/metabolism , Calcium/chemistry , Calcium/pharmacology , Calorimetry, Differential Scanning , Cations, Divalent/chemistry , Circular Dichroism , Humans , Hydrogen-Ion Concentration , Protein Conformation , Protein Denaturation , Protein Folding , Temperature
18.
Biochemistry ; 43(11): 3104-10, 2004 Mar 23.
Article in English | MEDLINE | ID: mdl-15023061

ABSTRACT

The alpha-retaining amylosucrase from the glycoside hydrolase family 13 performs a transfer reaction of a glucosyl moiety from sucrose to an acceptor molecule. Amylosucrase has previously been shown to be able to use alpha-D-glucopyranosyl fluoride as a substrate, which suggested that it could also be used for trapping the reaction intermediate for crystallographic studies. In this paper, the crystal structure of the acid/base catalyst mutant, E328Q, with a covalently bound glucopyranosyl moiety is presented. Sucrose cocrystallized crystals were soaked with alpha-D-glucopyranosyl fluoride, which resulted in the trapping of a covalent intermediate in the active site of the enzyme. The structure is refined to a resolution of 2.2 A and showed that binding of the covalent intermediate resulted in a backbone movement of 1 A around the location of the nucleophile, Asp286. This structure reveals the first covalent intermediate of an alpha-retaining glycoside hydrolase where the glucosyl moiety is identical to the expected biologically relevant entity. Comparison to other enzymes with anticipated glucosylic covalent intermediates suggests that this structure is a representative model for such intermediates. Analysis of the active site shows how oligosaccharide binding disrupts the putative nucleophilic water binding site found in the hydrolases of the GH family 13. This reveals important parts of the structural background for the shift in function from hydrolase to transglycosidase seen in amylosucrase.


Subject(s)
Bacterial Proteins/chemistry , Glucosyltransferases/chemistry , Neisseria/enzymology , Bacterial Proteins/genetics , Binding Sites/genetics , Conserved Sequence , Crystallography, X-Ray , Glucosyltransferases/genetics , Glutamic Acid/genetics , Glutamine/genetics , Substrate Specificity/genetics , Water/chemistry
19.
Biochemistry ; 43(5): 1156-62, 2004 Feb 10.
Article in English | MEDLINE | ID: mdl-14756551

ABSTRACT

Around 80 enzymes are implicated in the generic starch and sucrose pathways. One of these enzymes is sucrose phosphorylase, which reversibly catalyzes the conversion of sucrose and orthophosphate to d-Fructose and alpha-d-glucose 1-phosphate. Here, we present the crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis (BiSP) refined at 1.77 A resolution. It represents the first 3D structure of a sucrose phosphorylase and is the first structure of a phosphate-dependent enzyme from the glycoside hydrolase family 13. The structure of BiSP is composed of the four domains A, B, B', and C. Domain A comprises the (beta/alpha)(8)-barrel common to family 13. The catalytic active-site residues (Asp192 and Glu232) are located at the tips of beta-sheets 4 and 5 in the (beta/alpha)(8)-barrel, as required for family 13 members. The topology of the B' domain disfavors oligosaccharide binding and reduces the size of the substrate access channel compared to other family 13 members, underlining the role of this domain in modulating the function of these enzymes. It is remarkable that the fold of the C domain is not observed in any other known hydrolases of family 13. BiSP was found as a homodimer in the crystal, and a dimer contact surface area of 960 A(2) per monomer was calculated. The majority of the interactions are confined to the two B domains, but interactions between the loop 8 regions of the two barrels are also observed. This results in a large cavity in the dimer, including the entrance to the two active sites.


Subject(s)
Bifidobacterium/enzymology , Glucosyltransferases/chemistry , Amino Acid Sequence , Binding Sites , Crystallization , Crystallography, X-Ray , Dimerization , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
20.
J Biol Chem ; 279(1): 726-34, 2004 Jan 02.
Article in English | MEDLINE | ID: mdl-14570882

ABSTRACT

Amylosucrase from Neisseria polysaccharea is a remarkable transglucosidase from family 13 of the glycoside-hydrolases that synthesizes an insoluble amylose-like polymer from sucrose in the absence of any primer. Amylosucrase shares strong structural similarities with alpha-amylases. Exactly how this enzyme catalyzes the formation of alpha-1,4-glucan and which structural features are involved in this unique functionality existing in family 13 are important questions still not fully answered. Here, we provide evidence that amylosucrase initializes polymer formation by releasing, through sucrose hydrolysis, a glucose molecule that is subsequently used as the first acceptor molecule. Maltooligosaccharides of increasing size were produced and successively elongated at their nonreducing ends until they reached a critical size and concentration, causing precipitation. The ability of amylosucrase to bind and to elongate maltooligosaccharides is notably due to the presence of key residues at the OB1 acceptor binding site that contribute strongly to the guidance (Arg415, subsite +4) and the correct positioning (Asp394 and Arg446, subsite +1) of acceptor molecules. On the other hand, Arg226 (subsites +2/+3) limits the binding of maltooligosaccharides, resulting in the accumulation of small products (G to G3) in the medium. A remarkable mutant (R226A), activated by the products it forms, was generated. It yields twice as much insoluble glucan as the wild-type enzyme and leads to the production of lower quantities of by-products.


Subject(s)
Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Neisseria/enzymology , Oligosaccharides/metabolism , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Conserved Sequence , Glucosyltransferases/isolation & purification , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...